首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
通过复掺纤维的活性粉末混凝土(RPC)高温试验,研究了复掺纤维的活性粉末混凝土高温物理变化及力学性能变化规律。试验结果表明,随着温度增加,RPC表观颜色经历青灰色→微褐色→棕褐色→深褐色→灰褐色→灰白色的变化,表观裂缝数量由少量→较多→大量,此物理变化可为RPC结构火灾现场过火温度判断提供参考。随着温度的升高,复掺纤维的RPC抗压强度、抗拉强度、抗折强度均先增大后降低,其中,抗压强度、抗拉强度、抗折强度的临界温度分别为300℃、100℃、100℃。钢纤维、聚丙烯纤维的复合掺入有效提高了RPC高温后相对抗压强度、相对抗拉强度、相对抗折强度,钢纤维掺量为2%、聚丙烯纤维掺量为0.1%时,RPC有着较好的抗压、抗拉、抗折强度,同时RPC高温力学性能得到增强。  相似文献   

2.
通过试验研究了外掺聚丙烯纤维的活性粉末混凝土(RPC)高温爆裂及高温后力学性能,分析高温后RPC力学性能变化规律。结果表明,在RPC中掺入聚丙烯纤维有利于提高混凝土的抗爆裂性能,当聚丙烯纤维体积掺量为0.3%时,RPC试件在升温过程中并未发生爆裂。随着温度的升高,高温后RPC的抗压强度、抗拉强度均先提高后降低,其临界温度分别为300、100℃。随着聚丙烯纤维掺量的增加,高温后RPC相对抗压强度及抗拉强度也越高。根据试验结果拟合出聚丙烯纤维掺量为0.3%的RPC高温后抗压强度及抗拉强度计算公式。  相似文献   

3.
对不同钢纤维体积掺量的掺入引气剂的活性粉末混凝土(简称RPC)试件及未掺引气剂的RPC试件进行了高温后力学性能测试和质量测量,考察了RPC在掺入引气剂或未掺引气剂时,受火温度对不同钢纤维体积掺量的RPC试件的抗压强度、抗折强度、折压比及质量损失的影响。试验结果表明,未掺引气剂的RPC在超过200℃时爆裂,且在200℃之前强度变化趋势与掺引气剂RPC的强度变化趋势一致。随着试件所受高温温度的升高,试件强度整体呈现阶梯下降趋势;400℃以前,钢纤维体积掺量对RPC强度影响甚微,400℃以后,钢纤维体积掺量越高,残余强度百分比越大。不同钢纤维体积掺量RPC试件的质量损失率趋势一致,纤维掺量对RPC质量损失率影响不大。  相似文献   

4.
对活性粉末混凝土(RPC)立方体试件高温后抗压强度进行了测试,探讨了钢纤维掺量对RPC爆裂性能及抗压强度的影响。结果表明,钢纤维可以有效提高RPC常温及高温后的抗压强度,2%~3%的钢纤维掺量可以有效防止RPC在较高温度下发生爆裂。20~300℃时,RPC高温后抗压强度随着温度的升高不断提高,最大增幅可达24.55%;300~800℃时,RPC高温后抗压强度随着温度的升高不断降低,经受800℃高温的RPC最低残余强度仅为19.2%。基于试验结果,通过回归分析给出了钢纤维掺量为2%~3%的RPC高温后抗压强度计算公式。  相似文献   

5.
为了研究聚乙烯醇(PVA)纤维增强型水泥基复合材料高温后的力学性能,对30组共90个试件进行了力学性能试验,测得材料的立方体抗压强度、抗折强度、弹性模量、轴心抗压强度以及棱柱体单轴抗压应力-应变全曲线,并与相应基体的力学性能进行对比分析。结果表明:当加热温度低于200 ℃时,PVA纤维的掺入可有效改善水泥基复合材料的抗折强度和棱柱体单轴受压峰值荷载后的延性性能和韧性性能,降低弹性模量,对立方体抗压强度和棱柱体轴心抗压强度影响不大;温度高于200 ℃后,抗折强度、弹性模量和峰值荷载后的延性性能与韧性性能与基体接近,立方体抗压强度和轴心抗压强度均低于基体,轴心抗压强度下降幅度远远大于立方体抗压强度。  相似文献   

6.
通过测定高温作用后5种不同纤维掺量的混杂纤维(聚丙烯纤维和钢纤维)活性粉末混凝土( reactive powder concrete,RPC)残余抗压强度、残余劈裂抗拉强度及残余断裂能等力学性能,研究了混杂纤维RPC受高温作 用后残余力学性能特征.试验结果表明,聚丙烯纤维体积掺量为0.15%、钢纤维体积掺量为2%是改善高温残余力学性能的最佳体积掺量.纤维掺量不同的混杂纤维RPC,经不同高温作用后表面特征和残余力学性能的变化规 律均基本一致.随着温度升高,残余抗压强度先明显增长,再缓慢增长,直至不增长,最后明显下降,残余劈裂抗拉强度随着温度升高先略有下降或几乎不变,再较明显下降,最后大幅度下降;残余断裂能随着温度升高先略有提高(几乎不变),再较明显下降,最后大幅度下降.劈裂抗拉强度对高温造成的孔粗化效应和微裂纹更为敏感,抗压强度则敏感性较小,断裂能则介于抗压强度、劈裂抗拉强度二者之间.  相似文献   

7.
对120个经20~900℃作用后、尺寸为70.7mm×70.7mm×228.0mm的混杂纤维活性粉末混凝土(RPC)试件进行了单轴受压试验,分析了纤维掺量和经历温度对混杂纤维RPC轴心抗压强度、弹性模量、峰值应变和受压应力应变曲线的影响.结果表明:相同高温作用后,钢纤维掺量为1%(体积分数)的混杂纤维RPC抗压强度最低,而钢纤维掺量为2%,聚丙烯纤维掺量不同的混杂纤维RPC抗压强度差别不大;轴心抗压强度和弹性模量随经历温度的升高先增大后减小,且弹性模量下降速度比抗压强度快;经历温度为600℃时,峰值应变达到最大值,且峰值点前应变迅速增大,峰值点后呈线性减小.通过回归分析,建立了抗压强度、弹性模量和峰值应变随温度变化的计算公式,提出了用五次多项式和有理分式表达的混杂纤维RPC应力应变曲线方程.与普通混凝土和高强混凝土相比,混杂纤维RPC具有更优越的抗高温性能.  相似文献   

8.
刘晓仙  杜红秀  徐瑶瑶 《混凝土》2021,(1):87-90,97
为了提高活性粉末混凝土(RPC)的力学性能并改善其高温爆裂性,在RPC中将0.3%、0.4%聚丙烯纤维(PP)和0、1%、2%、3%钢纤维(S)组合复掺,共设计8组试件,养护并模拟火灾试验,统计试件在高温(200、400、600℃)作用下的爆裂情况,研究复掺纤维对高温后RPC的抗折和抗压强度、强度损失率、折压比的影响,抗压强度、受火温度与超声波速的规律,确定两种纤维的最佳配合比。结果表明:掺入PP可以改善RPC高温爆裂;RPC抗折、抗压强度、折压比及超声波速随受火温度升高均呈先上升再下降的趋势,复掺入S可提升RPC的抗压、抗折强度和折压比;当S与PP掺量分别为1%与0.3%、2%、0.4%时,RPC未爆裂且强度较高,超声波速与抗压强度的相关性也较高。  相似文献   

9.
选用玄武岩纤维作为超高强混凝土(UHSC)的外掺料,研究其在不同掺量下对UHSC的力学性能的影响。通过试验考察了各配合比下的立方体抗压强度、棱柱体抗压强度、抗折强度、劈裂抗拉强度,分析了玄武岩纤维掺量对各项指标的影响。结果表明:玄武岩纤维对立方体抗压强度、棱柱体抗压强度、抗折强度和劈裂抗拉强度均有提高作用,尤其当玄武岩纤维掺量为2 kg/m~3时,以上各项指标分别提高了10.9%、14.1%、10.2%、11.0%。  相似文献   

10.
研究了不同掺量PVA纤维对100 MPa超高强混凝土立方体抗压强度、轴心抗压强度、劈裂抗拉强度、抗折强度的影响,并结合扫描电镜,从微观上分析了PVA纤维对超高强混凝土的影响机理。研究结果表明:随着PVA纤维掺量的增加,纤维混凝土的立方体抗压强度和轴心抗压强度均降低,抗折强度和抗拉强度均有所上升。综合各项力学性能,在本试验范围内PVA纤维最优掺量为0.2%。  相似文献   

11.
单波  沈琦  张磊  陈俊 《建筑结构学报》2022,43(8):144-153
在高温试验炉中对大尺寸钢筋活性粉末混凝土(RPC)柱和普通混凝土柱开展了高温试验,以及高温后的抗压试验,获取了柱高温下的截面温度场与轴向变形发展,分析了控制温度与轴压荷载对高温后钢筋RPC柱受压性能的影响。结果表明:掺入体积分数为2%的钢纤维和0.3%的PP纤维,避免了RPC高温爆裂的发生,且有利于提高钢筋RPC柱的高温抗裂能力;轴压荷载有效抑制了钢筋RPC柱高温下的膨胀与高温后收缩裂缝的产生,但高温与荷载的耦合作用降低了钢筋RPC柱高温后的剩余承载力与变形能力;钢筋RPC柱在经历600 ℃和800 ℃高温作用后,其承载力分别下降了39%和68%,轴向刚度分别下降了68%和83%;相比于普通钢筋混凝土柱,钢筋RPC柱高温后的承载力降低幅度更大,但其剩余截面强度相对更高;基于材料试验获得的温度-强度相关关系,提出了钢筋RPC柱高温后的剩余承载力计算式,预测值与试验值较为接近。  相似文献   

12.
在高温试验炉中对大尺寸钢筋活性粉末混凝土(RPC)柱和普通混凝土柱开展了高温试验,以及高温后的抗压试验,获取了柱高温下的截面温度场与轴向变形发展,分析了控制温度与轴压荷载对高温后钢筋RPC柱受压性能的影响。结果表明:掺入体积分数为2%的钢纤维和0.3%的PP纤维,避免了RPC高温爆裂的发生,且有利于提高钢筋RPC柱的高温抗裂能力;轴压荷载有效抑制了钢筋RPC柱高温下的膨胀与高温后收缩裂缝的产生,但高温与荷载的耦合作用降低了钢筋RPC柱高温后的剩余承载力与变形能力;钢筋RPC柱在经历600 ℃和800 ℃高温作用后,其承载力分别下降了39%和68%,轴向刚度分别下降了68%和83%;相比于普通钢筋混凝土柱,钢筋RPC柱高温后的承载力降低幅度更大,但其剩余截面强度相对更高;基于材料试验获得的温度-强度相关关系,提出了钢筋RPC柱高温后的剩余承载力计算式,预测值与试验值较为接近。  相似文献   

13.
测定了抗压强度高于140MPa的含粗骨料超高性能混凝土和活性粉末混凝土遭受高温作用后的残余抗压强度、残余劈裂抗拉强度和残余断裂能。结果显示,两种超高性能混凝土的残余强度均随着目标温度的升高而呈现先增大再降低的趋势,而残余断裂能均随着目标温度的升高逐渐降低。各目标温度下,含粗骨料超高性能混凝土的残余抗压强度均高于活性粉末混凝土,但其残余劈裂抗拉强度和断裂能低于后者。活性粉末混凝土在300℃临界温度下的峰值残余抗压强度和峰值残余劈裂抗拉强度分别比常温时提高了26.8%和19.3%,800℃高温后的强度损失率分别为72.3%和81.4%。含粗骨料超高性能混凝土在400℃临界温度下的峰值残余抗压强度和在300℃目标温度下的峰值劈裂抗拉强度分别比常温时提高了34.0%和6.8%,800℃高温后的强度损失率分别为70.2%和84.9%。所以,对于有抗火灾高温要求的工程结构,含粗骨料超高性能混凝土适合用于受压构件,而活性粉末混凝土适宜于抗弯构件。  相似文献   

14.
采用40mm×40mm×160mm棱柱体试件,研究了高温后大掺量粉煤灰-应变硬化水泥基复合材料(HVFA-SHCC)的单轴压缩力学性能,探讨了不同目标温度(100、200、400、600、800℃)和不同冷却方式(自然冷却、浸水冷却)条件下HVFA-SHCC试件抗压强度、弹性模量、压缩韧性、破坏模式及质量的变化.采用扫描电子显微镜(SEM)对试件的微观结构进行分析,获得了高温后HVFA-SHCC单轴压缩性能的劣化机理.结果表明:当温度低于200℃时,温度对试件力学性能及质量损失的影响较小;400~800℃时,试件内部结构变得疏松,残余力学性能劣化严重,尤其是800℃时,试件的抗压强度仅为常温状态的39.9%,弹性模量为常温状态的32.3%,压缩韧性指数为常温状态的59.0%,质量损失率达15.5%;浸水冷却试件的残余力学性能得到了一定程度的提高.同时,基于试验结果,建立了高温后HVFA-SHCC的单轴压缩本构方程.  相似文献   

15.
增强磷酸镁水泥砂浆(MPCM)的抗弯韧性有利于促进其在混凝土路面修复领域的应用。为了增强MPCM的抗弯韧性,对比研究了未处理和硅烷偶联剂预处理的聚丙烯纤维对MPCM抗弯韧性的影响,分析了预处理聚丙烯纤维增韧MPCM的机制。结果表明,聚丙烯纤维质量掺量0.4%时,MPCM7d抗折强度增大23.5%;6-10mm聚丙烯纤维有利于提高MPCM的抗压强度,而10-19mm聚丙烯纤维更有利于提高MPCM的抗折强度;未处理聚丙烯纤维与磷酸镁水泥(MPC)水化产物之间为物理作用,聚丙烯纤维并未充分发挥增韧效果;用浓度20%的硅烷偶联剂溶液改性处理30~60min有利于改善聚丙烯纤维与MPC水化产物的界面粘结,使MPC水化产物和预处理后的聚丙烯纤维产生嵌合作用,显著地增强了MPCM的抗弯韧性。  相似文献   

16.
GFRP筋活性粉末混凝土梁受力性能试验研究   总被引:3,自引:0,他引:3  
为了研究GFRP筋活性粉末混凝土梁的受力性能,对8根梁进行三分点加载试验,获得了试验梁的开裂弯矩、极限弯矩以及各级荷载作用下的变形及裂缝分布与开展。试验结果表明:活性粉末混凝土试验梁纯弯区段开裂应变 (750×10-6) 约为普通混凝土梁的7倍,开裂弯矩及截面塑性系数计算应考虑纵向受拉GFRP筋的有利影响。GFRP筋活性粉末混凝土梁正截面受弯破坏形式可分为纵向受拉GFRP筋被拉断而受压边缘活性粉末混凝土未被压碎的受拉破坏,受压边缘活性粉末混凝土被压碎(5500×10-6)而纵向受拉GFRP筋未被拉断的受压破坏,以及纵向受拉GFRP筋被拉断的同时受压边缘活性粉末混凝土被压碎的界限破坏等三种。对于受压破坏可按拉区应力为0.25倍活性粉末混凝土抗拉强度来考虑拉应力对正截面受弯承载力的贡献。对于受拉破坏则基于材料应力-应变关系通过数值积分迭代计算正截面受弯承载力。刚度及裂缝宽度计算的关键是合理计算使用阶段GFRP筋的拉应力,在计算GFRP筋拉应力时所用弯矩应为外荷载弯矩减去拉区活性粉末混凝土拉应力合力对压区合力点的弯矩。图9表12参10  相似文献   

17.
为了研究短切玄武岩纤维混凝土试件尺寸变化对其基本力学性能的影响,对不同纤维长度(15,25 mm)、纤维体积掺量(0.1%,0.2%)、基体混凝土强度等级(C30,C40)的330个短切玄武岩纤维混凝土(BFRC)试件分别进行了立方体抗压强度、轴心抗压强度、劈裂抗拉强度、弯曲抗拉强度试验并对试验数据处理,以尺寸效应度反映尺寸效应规律。研究结果表明:玄武岩纤维混凝土立方体抗压强度试件的尺寸换算系数受混凝土的强度等级、纤维长度、纤维体积掺量的影响较小;轴心抗压强度的尺寸效应随混凝土强度等级、纤维长度、纤维体积掺量的增大均有所提高;劈裂抗拉强度随混凝土强度等级变化,其尺寸效应不明显,但随纤维长度的减小及纤维体积掺量的增加,尺寸效应有增大趋势;混凝土强度等级和纤维长度的改变对混凝土弯曲抗拉强度的尺寸效应影响不大,但随纤维体积掺量的增加,尺寸换算系数先减小后变大。  相似文献   

18.
纤维对自密实活性粉末混凝土强度的影响   总被引:2,自引:0,他引:2  
研究了不同掺量钢纤维、聚丙烯纤维对自密实活性粉末混凝土(RPC)力学性能的影响.结果表明:钢纤维的掺入提高了自密实RPC的抗压和抗折强度,尤其对抗折强度的提高非常明显,7 d抗折强度最大可提高95%,28 d抗折强度最大可提高73%;聚丙烯纤维可以提高自密实RPC 7 d抗折强度,最大可提高13%,但对抗压强度以及28 d抗折强度却起削弱作用;混杂纤维主要能提高自密实RPC的7 d抗折强度,最大可提高82%;纤维的掺加大都能降低自密实RPC的压折比,并提高其峰值荷载变形和断裂变形.  相似文献   

19.
Magnesium phosphate cement (MPC) received increased attention in recent years, but MPC-based concrete is rarely reported. The micro-steel fibers (MSF) were added to MPC-based concrete to enhance its ductility due to the high brittleness in tensile and flexural strength properties of MPC. This paper investigates the effect of MSF volume fraction on the mechanical properties of a new pattern of MPC-based concrete. The temperature development curve, fluidity, cubic compressive strength, modulus of elastic, axial compressive strength, and four-point flexural strength were experimentally studied with 192 specimens, and a scanning electron microscopy (SEM) test was carried out after the specimens were failed. Based on the test results, the correlations between the cubic compressive strength and curing age, the axial and cubic compressive strength of MPC-based concrete were proposed. The results showed that with the increase of MSF volume fraction, the fluidity of fresh MPC-based concrete decreased gradually. MSF had no apparent influence on the compressive strength, while it enhanced the four-point flexural strength of MPC-based concrete. The four-point flexural strength of specimens with MSF volume fraction from 0.25% to 0.75% were 12.3%, 21.1%, 24.6% higher than that of the specimens without MSF, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号