首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
螺栓球钢网架结构火灾后,其螺栓球节点用高强度螺栓剩余力学性能对结构整体安全至关重要.通过对螺栓球钢网架常用的10.9 s级40Cr和35CrMn螺栓球节点用高强度螺栓进行过火冷却后力学性能试验,主要控制参数为过火温度和冷却方式,并对其力学性能变化规律进行了分析,得到两种高强螺栓过火冷却后的抗拉强度变化规律.结果表明:4...  相似文献   

2.
为评估火灾后铝合金结构性能,应采用合理的材料本构模型,为此,对建筑用6061-T6、7075-T73铝合金进行了单次和反复受火后力学性能试验(采用自然冷却和消防喷水冷却两种冷却方式)。分析了受火后铝合金应力-应变全曲线、弹性模量、屈服强度、抗拉强度以及延性等相关力学性能指标及其随受火温度的变化。试验结果表明:6061-T6铝合金在经历超过300℃高温后,其力学性能发生明显变化,而对于7075-T73铝合金,相应温度为200℃;不同冷却方式和反复升温-冷却过程对铝合金的力学性能影响较大;拟合了不同冷却方式下6061-T6、7075-T73铝合金单次及反复受火后力学性能的计算式,其结果与试验结果吻合良好。  相似文献   

3.
通过升温、冷却和拉伸试验,对历经300~900℃高温后的Q690钢材在自然冷却和浸水冷却条件下的力学性能展开试验研究。结果表明:经高温冷却的Q690钢材在不同温度和不同冷却方式下有不同的外观特征;受热温度超过500℃时,高温冷却对Q690钢材的弹性模量影响很小,对其强度和伸长率影响较大;当受热温度不超过700℃时,Q690钢材高温后的强度和伸长率在两种冷却方式下具有基本相同的变化规律;在700~800℃之间,不同冷却方式对Q690钢材高温后强度和伸长率产生影响,且随温度升高差别愈加明显,自然冷却条件下强度降低且伸长率增大,浸水冷却条件下强度增大且伸长率减小。将Q690钢材高温后力学性能与Q235钢材和Q460钢材比较,认为不同强度等级钢材高温后的力学性能差别显著,在自然冷却条件下较高强度钢材(Q690)的强度衰减和延性增长大于较低强度钢材(Q235和Q460)的。根据试验结果,建立了不同冷却条件下的高温后各力学参数与受热温度之间的数学模型,该模型可用于火灾后Q690钢结构的承载能力的评估。  相似文献   

4.
开展了43个侧面角焊缝连接试件高温冷却后的拉伸试验,过火温度介于200~900℃,冷却方式包括自然冷却和泼水冷却.采用三直线模型计算高温后侧面角焊缝极限抗剪强度变化系数.结果表明:高温后侧面角焊缝破坏截面与钢板平面的夹角基本呈45°,表明焊缝是在剪切应力作用下发生破坏;过火温度超过400℃后,侧面角焊缝极限抗剪强度开始显著下降,过火温度为700℃时焊缝极限抗剪强度降幅约为25%;过火温度超过700℃后侧面角焊缝极限抗剪强度有所回升,冷却方式对焊缝极限抗剪强度的回升程度有显著影响;以三直线模型计算的高温后侧面角焊缝极限抗剪强度变化系数结果与试验值吻合良好.  相似文献   

5.
为了评估Q460高强钢高强度螺栓受剪连接高温自然冷却后的力学性能,采用电炉对受剪连接试件加热至目标温度后再自然冷却至常温,通过拉伸试验研究了过火温度、过火处理方法对受剪连接试件力学性能的影响。结果表明:不同的过火温度和过火处理方法对试件内部的表观特征以及在拉伸试验中的试验现象、板材间和板材与螺栓间的接触状态的影响是不同的;自然组主要是由于高温导致螺栓预紧力减小,而后装组主要是由于高温后板材表面新产生的浮锈引起抗滑移系数改变。不同过火温度和过火处理方法对试件的极限荷载、极限位移和抗拉刚度有很大影响;自然组试件的极限荷载和抗拉刚度总体随着温度的升高而减小,极限位移总体随着温度的升高而增加;后装组试件的极限荷载总体随着温度的升高而减小,而极限位移随着温度的升高而增加,抗拉刚度与常温试件基本一致。试件在高温自然冷却后表现出了较好的延性,试件的破坏形态均为其中一侧芯板外侧螺栓孔处净截面拉断。  相似文献   

6.
为了研究高强Q960钢在火灾后的力学性能,对过火温度为300~900℃的高强Q960钢试件进行了稳态拉伸试验,得到其在自然冷却和浸水冷却条件下的应力-应变曲线、弹性模量、屈服强度和极限强度.结果表明:600℃是高强Q960钢强度发生明显变化的临界温度,将试验结果与普通Q235钢、Q345钢和高强Q460钢、Q690钢、S960钢进行比较,发现不同种类钢材经历高温后的力学性能退化程度并不相同;根据试验结果,建立了高强Q960钢高温后力学性能折减系数随温度变化的拟合公式,拟合结果与试验结果吻合较好.  相似文献   

7.
为了评估双相冷成型钢高温冷却后的力学性能,采用箱式炉对试件进行加热升温至300~1 000℃,在指定温度下分别保温15min和60min,自然冷却后进行拉伸试验,得到双相冷成型钢过火后的应力-应变曲线、弹性模量、屈服强度、抗拉强度和断后伸长率。结果表明,保温时间对过火后材性有显著影响,保温时间越长,材料力学性能的衰减越明显;另一方面,双相冷成型钢的过火后力学性能随着过火温度的升高而降低,但在600~800℃温度区间有显著的回升。因此,相关研究的预测公式不适用于过火后的双相冷成型钢,在过火后材性试验数据的基础上,给出了基于不同保温时间的双相高强冷成型钢高温后强度折减预测公式。  相似文献   

8.
钛-钢复合钢是一种拥有良好力学性能和耐腐蚀性能的双金属材料。为了准确评估火灾后钛-钢复合钢的剩余服役能力,对高温后不同冷却条件下钛-钢复合钢的力学性能进行了试验研究。试验结果表明:经过高温和冷却处理后,钛-钢复合钢的复合界面保持有效连接;在拉伸试验过程中,颈缩之前复层TA1与基层Q235保持协同变形;过火温度和冷却方式对钛-钢复合钢断裂模式有较大影响,根据基层和复层断裂顺序分为基层和复层基本同时断裂、复层先于基层断裂、基层先于复层断裂等3种破坏模式。与已有其他钢材试验结果的对比分析表明:与不锈钢S30408、S31608不同,钛-钢复合钢的弹性模量基本不受过火温度和冷却方式影响;高温后自然冷却条件下,钛-钢复合钢屈服应力显著高于常温的,而极限应力基本不受过火温度影响;水冷条件下,过火温度不超过600℃时,过火温度对钛-钢复合钢力学性能基本没有影响,而过火温度超过600℃后,随着过火温度升高钛-钢复合钢屈服应力和极限应力显著提高,这与其他钢材略有区别。基于试验结果拟合了钛-钢复合钢的三段式非线性本构模型,采用模型的预测结果与试验结果吻合较好。  相似文献   

9.
为研究热冲压球壳Q235钢材高温后的力学性能,对经历400~900℃高温后由自然冷却和喷水冷却到常温空心球加工制作成的受拉试样进行拉伸试验,得到高温冷却后该材料的应力-应变曲线、弹性模量、屈服强度、抗拉强度和断后伸长率,并与普通Q235钢高温后力学性能进行了对比。研究结果表明:当经历温度不超过500℃时,钢材高温后强度与断后伸长率在两种冷却方式下变化规律基本类似,且变化很小。当经历温度超过500℃后,不同冷却方式对材料高温后强度与断后伸长率产生明显影响,且温度越高,相差越大,自然冷却方式下,随着温度的升高,强度降低而断后伸长率变大。喷水冷却方式下,抗拉强度增大而伸长率减小,屈服强度在500~700℃之间逐渐增大,700℃之后又快速下降。弹性模量受经历温度与冷却方式的影响较小。  相似文献   

10.
为研究高温及冷却方式对不同厚度S280GD+Z钢材力学性能的影响,通过高温、冷却和拉伸试验,对经历20℃~800℃高温后1.0mm、1.5mm和2.0mm厚S280GD+Z钢材在自然冷却和浸水冷却方式下的力学性能进行了试验研究。结果表明:受火温度和冷却方式对S280GD+Z钢材表面特征和破坏模式影响较大,对其弹性模量影响较小;温度低于600℃时,受火温度和冷却方式对S280GD+Z钢材屈服强度、极限强度和伸长率影响较小;温度超过600℃后,自然冷却方式下,不同厚度S280GD+Z钢材屈服强度和极限强度均随受火温度提高而降低;浸水冷却方式下,1.5mm和2.0mm厚S280GD+Z钢材屈服强度和极限强度随受火温度的提高而增大,伸长率随受火温度的提高而降低。将不同厚度S280GD+Z钢材高温后力学性能与其他冷成型钢材比较,认为不同钢材高温后力学性能差异较大。所建立力学参数与受火温度间数学模型可为采用S280GD+Z钢材的冷弯薄壁型钢结构火灾后安全评价与加固设计提供参考。  相似文献   

11.
为研究高强耐火钢在高温下的力学性能,通过国产Q345FR、Q420FR、Q460FR耐火钢的高温下稳态拉伸试验和热膨胀变形试验,得到了20~800℃下各等级耐火钢的破坏模式、应力-应变关系曲线、力学性能参数及热膨胀系数,并与普通结构钢高温性能以及欧洲、中国的抗火设计规范的相关规定进行了对比。研究结果表明:在温度低于350~400℃时,国产高强耐火钢屈服强度、抗拉强度高于常温的,当温度超过400℃后,屈服强度、抗拉强度开始快速下降;欧洲规范EC3中给出的高温下普通结构钢的弹性模量、强度计算公式不适用于高强度耐火钢;温度低于450℃时,耐火钢试验值与GB 51249—2017《建筑钢结构防火技术规范》中普通钢取值更吻合;温度高于450℃时,耐火钢试验值与规范GB 51249—2017中耐火钢取值更吻合。针对Q345FR、Q420FR、Q460FR高强耐火钢,提出了高温下弹性模量、屈服强度、抗拉强度变化系数拟合公式,可用于耐火钢结构抗火设计。  相似文献   

12.
为研究高强耐火钢在高温下的力学性能,通过国产Q345FR、Q420FR、Q460FR耐火钢的高温下稳态拉伸试验和热膨胀变形试验,得到了20~800℃下各等级耐火钢的破坏模式、应力-应变关系曲线、力学性能参数及热膨胀系数,并与普通结构钢高温性能以及欧洲、中国的抗火设计规范的相关规定进行了对比。研究结果表明:在温度低于350~400℃时,国产高强耐火钢屈服强度、抗拉强度高于常温的,当温度超过400℃后,屈服强度、抗拉强度开始快速下降;欧洲规范EC3中给出的高温下普通结构钢的弹性模量、强度计算公式不适用于高强度耐火钢;温度低于450℃时,耐火钢试验值与GB 51249—2017《建筑钢结构防火技术规范》中普通钢取值更吻合;温度高于450℃时,耐火钢试验值与规范GB 51249—2017中耐火钢取值更吻合。针对Q345FR、Q420FR、Q460FR高强耐火钢,提出了高温下弹性模量、屈服强度、抗拉强度变化系数拟合公式,可用于耐火钢结构抗火设计。  相似文献   

13.
高强钢高温下和高温后的力学性能是进行高强钢结构抗火设计和火灾后评估的重要基础。我国GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EC3中针对普通低碳钢提出了高温下屈服强度和弹性模量计算公式,但其不适用于高强钢。国内外学者对高温下和高温后高强钢力学性能已开展了一系列试验研究,但由于钢材强度等级、试验设备、加热速率和加载制度等影响,导致试验结果离散性较大,不能应用于实际工程中。同时不同学者提出的力学性能指标计算式各不相同,均不具有普遍适用性。采用数理统计中t分布与置信区间的方法对高强钢高温下和高温后力学性能试验数据进行统计分析,得到不同温度下力学性能指标具有95%保证率的标准值,拟合出高强钢高温下和高温后力学性能指标的计算式,并与GB 51249—2017和欧洲规范EC3预测结果进行对比。结果表明:自然冷却和浸水冷却条件下,高强钢高温后屈服强度发生明显下降的转折点分别是600℃和 500℃;高温下高强钢的屈服强度折减系数低于普通结构钢;高强钢弹性模量折减系数在作用温度小于600℃时低于普通结构钢的,而在温度大于600℃时高于普通结构钢的。  相似文献   

14.
高强钢高温下和高温后的力学性能是进行高强钢结构抗火设计和火灾后评估的重要基础。我国GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EC3中针对普通低碳钢提出了高温下屈服强度和弹性模量计算公式,但其不适用于高强钢。国内外学者对高温下和高温后高强钢力学性能已开展了一系列试验研究,但由于钢材强度等级、试验设备、加热速率和加载制度等影响,导致试验结果离散性较大,不能应用于实际工程中。同时不同学者提出的力学性能指标计算式各不相同,均不具有普遍适用性。采用数理统计中t分布与置信区间的方法对高强钢高温下和高温后力学性能试验数据进行统计分析,得到不同温度下力学性能指标具有95%保证率的标准值,拟合出高强钢高温下和高温后力学性能指标的计算式,并与GB 51249—2017和欧洲规范EC3预测结果进行对比。结果表明:自然冷却和浸水冷却条件下,高强钢高温后屈服强度发生明显下降的转折点分别是600℃和 500℃;高温下高强钢的屈服强度折减系数低于普通结构钢;高强钢弹性模量折减系数在作用温度小于600℃时低于普通结构钢的,而在温度大于600℃时高于普通结构钢的。  相似文献   

15.
通过稳态拉伸试验法对国产超高强钢Q890在不同火灾高温条件下的力学性能进行了试验研究,得到高温下钢材的力学性能参数、应力-应变关系曲线和试验现象,并将所得试验结果与钢结构抗火设计规范及相关超高强钢研究文献中高温材料模型结果进行比较。分别采用多项式模型和钢材高温通用材料模型对试验结果进行数值拟合,建立高温下Q890钢力学性能参数的材料模型。结果表明:不同温度条件下的Q890钢试件在试验后有明显不同的外观特征,相应的应力-应变关系曲线基本形状差异较大;当受热温度低于500 ℃时,弹性模量和强度随温度升高逐步减小,断后伸长率变化不大;超过500 ℃后,弹性模量和强度下降速率明显加快,断后伸长率急剧增大;所建立的模型为研究Q890钢结构抗火性能及其计算方法提供理论基础。  相似文献   

16.
高温后HRBF500细晶粒钢筋力学性能试验研究   总被引:4,自引:1,他引:3  
试验研究了16组共48根HRBF500细晶粒钢筋在常温和高温冷却作用后(5种温度、3种冷却方式)的力学性能,得到了不同高温冷却作用后细晶粒钢筋的应力-应变关系,分析了屈服强度、抗拉强度、弹性模量、断后伸长率、均匀伸长率、截面收缩率等的变化规律。试验表明:温度作用相对较低时(300℃、400℃、600℃),细晶粒钢筋力学性能变化不明显;温度作用相对较高时(700℃、900℃),细晶粒钢筋各项力学指标逐渐退化。根据试验结果,经回归分析建议了高温后细晶粒钢筋屈服强度、抗拉强度、弹性模量、断后伸长率的计算公式。研究成果可作为火灾后采用HRBF500级细晶粒钢筋混凝土结构的损伤评估的依据。图12表6参7  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号