首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
砂岩渗透率随静压力变化的关系研究   总被引:11,自引:3,他引:8  
通过实验研究了大庆砂岩渗透率随静压力变化的规律。在等效毛管模型基础上,得到了砂岩的渗透率与压力之关系。运用最小二乘法,对实验数据进行了拟定,并确定了模型关系中的参数。结果表明,所建模型具有一定的合理性。  相似文献   

2.
常规的应力应变试验难以清晰地反映砂岩在不同应力状态下的细观应变特性,然而,砂岩细观应变特性对一些工程的影响是非常巨大的。通过螺旋CT机以及与其配套的实时三轴加载和渗透压力设各对砂岩进行各种应力状态下的应变特性试验,反映出不同应力状态下的砂岩的应变特性有很大不同。结合CT图像和CT数的分析,对砂岩应变过程中的孔隙率的变化能直观地进行计算,以及对CT数方差的分析,能较简单地判断出砂岩的应变特性以及破坏模式。研究结果表明:(1)在单轴和三轴压力作用下,砂岩CT数方差变化剧烈的地方发生脆性变化,而方差比较稳定的地方发生塑性变化;(2)当有渗透水流作用时,砂岩应变特性与干砂岩的应变特性有明显差异,峰值强度显著增大,残余强度也明显增加;(3)砂岩在单轴干燥状态下是发生脆性破坏,而在有渗透压力和围压的情况下发生的是塑性破坏,有围压而没有渗透压作用时的破坏介于两者之间。  相似文献   

3.
常规的应力应变试验难以清晰地反映砂岩在不同应力状态下的细观应变特性,然而,砂岩细观应变特性对一些工程的影响是非常巨大的。通过螺旋CT机以及与其配套的实时三轴加载和渗透压力设备对砂岩进行各种应力状态下的应变特性试验,反映出不同应力状态下的砂岩的应变特性有很大不同。结合CT图像和CT数的分析,对砂岩应变过程中的孔隙率的变化能直观地进行计算,以及对CT数方差的分析,能较简单地判断出砂岩的应变特性以及破坏模式。研究结果表明:(1)在单轴和三轴压力作用下,砂岩CT数方差变化剧烈的地方发生脆性变化,而方差比较稳定的地方发生塑性变化;(2)当有渗透水流作用时,砂岩应变特性与干砂岩的应变特性有明显差异,峰值强度显著增大,残余强度也明显增加;(3)砂岩在单轴干燥状态下是发生脆性破坏,而在有渗透压力和围压的情况下发生的是塑性破坏,有围压而没有渗透压作用时的破坏介于两者之间。  相似文献   

4.
利用最新研制的中低压多功能CT机配套专用渗流试验装置,分别对干燥砂岩试样和渗流砂岩试样进行了三维应力状态下的实时CT观测,根据试验结果初步讨论了砂岩裂隙隙宽变化与CT数变化的相关关系,并提出了裂隙隙宽的计算公式。  相似文献   

5.
渗透环境下化学腐蚀裂隙岩石破坏过程的CT 试验研究   总被引:3,自引:0,他引:3  
 通过CT扫描试验研究渗透及无渗透环境下受化学腐蚀及未受化学腐蚀预制裂隙砂岩的三轴压缩破坏过程,分析试件破坏过程中各层面的CT数变化规律,并对渗透环境下不同试验阶段试验参数的变化规律以及渗透环境对砂岩强度的影响进行分析。试验结果表明,在微裂隙扩展与主裂隙贯通的过程中,对于无渗透环境,由于微裂隙发育导致裂尖处有所密合,之后随着试件的破裂CT数逐步减小;而对于渗透环境,由于孔隙水压力作用,在此过程中裂尖处无密合现象,而是继续开裂,CT数继续减小直至破坏。试件破坏后,无渗透环境下试件破坏时产生的裂隙较单一,而渗透环境下由于渗透作用和孔隙水压力作用,试件破坏时产生的裂隙相对来说较复杂,说明渗透环境对试件的破坏损伤作用较大。在试件变形从应力–应变曲线的线性阶段开始到裂尖破裂阶段,渗透环境的影响对应力以及变形所经历的时间大小起主要决定作用;在试件变形从裂尖破裂到裂隙贯通阶段,应力以及变形所经历的时间受化学腐蚀程度和渗透环境共同影响。渗透环境对砂岩强度的影响非常明显,无渗透环境下试件的强度远大于渗透环境下试件的强度,如试件经浓度为0.01 mol/L,pH值为2的NaCl溶液腐蚀后,其强度只有无渗透环境下的16.6%。  相似文献   

6.
不同粒度砂岩力学和渗透特性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨砂岩粒度对力学行为和渗透特性的影响,利用MTS815 Flex Test GT岩石力学试验系统,对取自同一工程的粗粒砂岩、中粒砂岩和细粒砂岩进行常规三轴试验和三轴压缩全过程渗透试验。研究表明:随着粒度减小,砂岩抗压强度及抗剪强度参数c和φ均增大;渗透水压作用下砂岩强度降低5.15%~24.66%。渗透率变化规律与变形变化特征呈阶段对应:线弹性阶段砂岩内部孔隙被压密,渗透率降低;弹塑性阶段渗透率先是缓慢增加然后急剧上升,在峰后达到最大值;峰后继续破坏阶段渗透率又呈逐渐降低特征。相同粒度砂岩的渗透性随围压增加而降低,且不同围压下渗透率可拟合成线性函数;相同围压下不同粒度砂岩渗透率整体特征表现为:粗粒砂岩渗透率K 约为中粒砂岩的105倍,中粒砂岩渗透率K约为细粒砂岩的10倍。  相似文献   

7.
为研究深部盐水层CO2储存中不同盐水环境下砂岩的力学及渗透特性,采用常规三轴压缩、声发射监测和渗透试验相综合的方法,研究了不同盐水砂岩试样在不同围压下CO2渗透率、强度及变形特性的变化规律,并结合微观结构揭示不同盐水溶液对砂岩渗透及强度特性的作用机制.研究结果表明:不同溶液饱和砂岩试样的CO2渗透率、峰值强度、损伤阈值...  相似文献   

8.
CT尺度砂岩渗流与应力关系试验研究   总被引:2,自引:7,他引:2  
岩石渗流与应力关系研究是进行岩石渗流场与应力场耦合分析的关键。运用岩石高压三轴加载装置和渗透压加载装置,对砂岩进行了渗流与应力关系试验,同时借助SOMATOMPLUS螺旋CT扫描机进行实时观测。通过试验结果分析,推出了基于CT数的岩石孔隙率公式,在此基础上,分析了岩石应力–应变过程中孔隙率、渗透速度、渗流速度、微孔隙直径、渗透率等的变化规律。结果发现:岩石渗透参数的变化与岩石受力损伤–破裂过程密切相关。在初期的压密阶段,岩石的孔隙率、渗透速度、渗流速度、微孔隙直径、渗透率等随应力的增大而减小;当岩石的内部出现微裂纹后,岩石的孔隙率、渗透速度、渗流速度、微孔隙直径、渗透率等随应力的增大而增大,从宏观应力–应变关系看,从微裂纹出现到宏观破坏出现前,岩石还处于弹性变形阶段;当岩石宏观破坏时,岩石的孔隙率、渗透速度、渗流速度、微孔隙直径、渗透率等达到最大值。同时还发现:在渗透水压力作用下,受压砂岩的微裂纹起裂应力占岩石峰值强度的45%,而同样干岩样中微裂纹起裂应力占岩石峰值强度的55%以上,也就是说,渗透水压力使砂岩样的强度损失10%。  相似文献   

9.
低渗透污染土水动力弥散参数试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李磊  朱伟  屈阳  包建平 《岩土工程学报》2011,33(8):1308-1312
污染土的治理中通常采用降低渗透性的措施来控制其二次污染。通过获得其水动力弥散参数可以对其二次污染进行评价和预测,但是现有的土柱试验以及求解方法不适用于低渗透污染土水动力弥散参数的测定和求解。针对低渗透污染土水动力弥散参数试验和求解的问题,提出采用改进的柔性壁渗透仪测定其污染物的穿透曲线,根据所获得的穿透曲线,采用数值反演的方法计算污染土的水动力弥散参数。结果表明,采用柔性壁渗透仪和数值反演的方法,能够满足低渗透污染土水动力弥散参数测定的需要。  相似文献   

10.
孔隙水压力-围压作用下砂岩力学特性的试验研究   总被引:1,自引:4,他引:1  
利用MTS815岩石力学测试系统进行两类三轴压缩对比试验:一类是非充水条件下不同围压时的三轴压缩试验;一类是充水条件且围压保持恒定时不同孔隙水压力作用下的三轴压缩试验。基于莫尔-库仑准则,分析非充水条件下,不同围压σ3作用对细砂岩的峰值破坏强度σ1max及其对应的轴向应变ε1max、剪切强度τ和正应力σ等参数的影响;充水条件下,围压σ3恒定时不同孔隙水压力P作用对细砂岩的峰值破坏强度σ1max及其对应的轴向应变ε1max、有效峰值破坏强度σ1′max、有效围压3σ′、有效剪切强度τ′和有效正应力σ′等参数的影响。研究结果表明:(1)充水条件下,随着有效围压σ3′的增加,有效峰值破坏强度σ1′max呈增大的趋势,但在相同围压条件下随孔隙水压力P的增加有效峰值破坏强度σ1′max呈逐渐减小的趋势;(2)非充水条件下的τ-σ曲线和充水条件下的τ′-σ′曲线既可采用一元二次方程拟合,也可采用线性方程拟合,其相应强度曲线均能较好地符合莫尔-库仑准则;(3)有效剪切强度折减系数K可以较好地表征孔隙水压力P对有效剪切强度τ′的影响。  相似文献   

11.
12.
油页岩各向异性渗透率影响热解油气和对流加热流体在油页岩岩层中的运移速度和范围。因此,研究高温下油页岩渗透率的各向异性特征对于原位注热开采油页岩具有重要意义。采用实时高温三轴稳态法渗透测试系统研究了不同温度不同层理方向的油页岩的渗透率的演化规律。研究表明,垂直层理方向的渗透率在20℃~450℃在10-20 m2之下,超出了稳态法渗透测试系统测试范围,处于超低渗阶段;当温度超过450℃之后,渗透率处于2.5×10-19~1.17×10-17 m2范围,450℃称之为垂直层理渗透率演化的阈值温度。平行层理的渗透率在20℃~400℃范围,都处于较低渗透率阶段,为2.3×10-19~2.9×10-18 m2,当温度高于400℃,平行层理方向的渗透率急剧增加,量级在10-16~10-15范围,因此400℃被称为平行层理渗透率演化的阈值温度。然后利用高温三轴瞬态法渗透测试系统,测得了...  相似文献   

13.
渗流状态下砂岩的三维实时CT观测   总被引:2,自引:1,他引:2  
利用中低压多功能CT专用渗流实验装置,进行了三维应力状态下砂岩的渗流实时CT观测试验研究。为使试验具有对比性,分别进行干燥试样的常规三轴试验和渗流三轴试验的CT实时观测,取得了渗流对岩石损伤演化规律影响的初步成果。根据试验过程的应力–应变曲线,提出试样强度和变形折减率的计算公式;分析了干燥试样和渗透试样CT数与应力的相关关系;提出了确定裂缝宽度的像素量测法;提出根据测区平均CT数与测区面积的相关关系来确定裂缝宽度的数值计算方法。  相似文献   

14.
 制备含水饱和度为0%~70%的砂岩岩样,利用低渗透岩石气体渗透测试装置,对不同含水饱和度的砂岩岩样进行气渗试验,测量其在不同围压和渗压下的渗透率以及对应围压下的孔隙度,分析和讨论不同含水饱和度低渗透砂岩渗透率、孔隙度与应力三者之间的关系。得到以下结论:含水饱和度低于50%的低渗透砂岩,其气测渗透率随孔隙压力的增大而减小,含水饱和度高于50%的低渗透砂岩,其气测渗透率的变化规律相反;气测渗透率与孔隙压力符合指数函数关系;随着含水饱和度的增大,气测渗透率对孔隙压力变化的敏感性减少,且气测渗透率对孔隙压力变化的敏感性随着孔隙压力的增大而增大;绝对渗透率、孔隙度与围压均呈指数函数关系;随着含水饱和度的增大,绝对渗透率对围压变化的敏感性增大,对孔隙度变化的敏感性减小,且绝对渗透率和孔隙度对围压变化的敏感性均是随着围压增大而减小;低渗透砂岩的孔隙度与其绝对渗透率的变化成正相关,孔隙度的少量降低即能引起其绝对渗透率的大幅度下降;绝对渗透率与孔隙度成指数函数关系;随着含水饱和度增大,绝对渗透率对孔隙度变化的敏感性增强,且随着孔隙度的增大,绝对渗透率对孔隙度变化的敏感性也逐渐增强。  相似文献   

15.
温度围压对低渗透砂岩孔隙度和渗透率的影响研究   总被引:2,自引:0,他引:2  
 对低孔、高孔两组低渗透砂岩岩心孔隙度和渗透率在温度压力共同作用下的变化特征进行试验研究。在围压5 MPa、温度25 ℃的条件下,第一组砂岩的孔隙度变化范围为3.2%~4.6%,渗透率为0.098 8×10-3~0.191 9× 10-3 μm2;第二组砂岩的孔隙度变化范围为12.8%~14.2%,渗透率为0.176 7×10-3~0.301 3×10-3 μm2。研究结果表明,在试验采用的温度、压力变化范围(25 ℃~80 ℃,5~55 MPa)内,两组低渗透砂岩的孔隙度、渗透率都表现出了较强的压力、温度敏感性。随温度、围压升高,孔隙度、渗透率都减小,围压对渗透率的影响明显高于温度对渗透率的影响。总的趋势看,温度对孔隙度的影响高于围压对孔隙度的影响,恒定测量围压5 MPa,温度由25 ℃升高到80 ℃,低孔低渗砂岩孔隙度下降了34.7%,渗透率下降了75.1%;高孔低渗砂岩孔隙度降低了18.4%,渗透率下降了35.2%;恒定测量温度25 ℃,围压由5 MPa升高到55 MPa,低孔低渗砂岩孔隙度降低32.3%,渗透率下降了89.5%,高孔低渗砂岩孔隙度降低了4.6%、渗透率降低了77.4%。  相似文献   

16.
介绍了超深水泥土搅拌桩在软土加固工程中的应用,通过进行室内渗透试验和抗压试验,测定不同土层处桩体的渗透系数及加固体强度,并对试验结果进行分析。试验表明:超深水泥土搅拌桩能够显著降低砂性土层的渗透系数,增强土体的强度。采用超深水泥土搅拌桩加固软土地基是可行的。  相似文献   

17.
在寒区岩土工程中,季节性冻融是温度由正温经过数月缓慢变化到负温的过程及其逆过程,而昼夜冻融和气候骤变造成的冻融是温度由正温经过较短时间迅速变化到负温的过程及其逆过程。因此,研究冻结速度对岩石损伤结构的影响具有重要意义。利用CT扫描技术和岩石冻融实验,探讨了开放环境下冻结速度对3种铜川砂岩损伤扩展的影响,运用扫描层面内CT数统计频率分析法着重对冻融岩样扫描层面内的CT数变化规律进行分析,对寒区岩土工程具有一定的指导意义。  相似文献   

18.
杨圣奇  荆晓娇 《岩土工程学报》2023,40(10):2165-2171

四川地区降雨蒸发、库区水位涨落等因素严重影响该地区边坡工程的稳定性。以盐水(5%NaCl)为浸泡溶液对不同干湿循环次数(0,5,10,20次)作用后饱和砂岩开展三轴压缩试验,分析其物理力学参数劣化规律,进而揭示盐水和干湿循环共同作用对饱和砂岩的损伤机理。研究结果表明:随着干湿循环次数增加,砂岩质量先增加后降低,而渗透率先降低后增加,干湿循环5次为试样质量变化率和渗透率的阈值;干湿循环作用后试样的峰值强度、内摩擦角、黏聚力以及弹性模量均小于干燥砂岩,并且随循环次数增加,试样峰值强度、黏聚力逐渐降低,而内摩擦角表现为先减小后增加;试样弹性模量随围压增加呈不同变化趋势;干湿循环对砂岩破坏模式无明显影响,即单轴和三轴压缩下试样分别呈轴向劈裂和剪切破坏。在干湿循环过程中,砂岩内部矿物颗粒逐渐流失,造成内部孔隙增大,是诱发岩石产生损伤的根本原因。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号