首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Inspired by the ITER COntrol, Data Access and Communication (CODAC) and ITER instrumentation and control system, J-TEXT tokamak has upgraded its control system with J-TEXT CODAC system. The J-TEXT CODAC system is based on Experimental Physics and Industrial Control System (EPICS). The J-TEXT CODAC system covers everything in the J-TEXT control system including both central and plant control systems, similar to the ITER I&C system. J-TEXT CODAC system is built around a single central control system called Central CODAC system. All the control functions including conventional control, interlock, safety and other common services are supervised by CCS. The J-TEXT CODAC system has been implemented and tested on J-TEXT. It not only tests some of the ideas in ITER CODAC in real life, but also explores the feasibility of new approaches that is unique in J-TEXT CODAC system.  相似文献   

2.
J-TEXT装置是华中科技大学恢复建造的中型托卡马克装置,已于2007年放电运行,其控制系统采用分布式结构,由多个子系统组成。为提高子系统集成、维护和更新的效率,并有效地管理各子系统、控制装置的运行状态及保障设备和人员安全,J-TEXT装置参考ITER CODAC的设计思路,结合J-TEXT装置的需求设计了J-TEXT CODAC系统。J-TEXT CODAC系统为装置各子系统提供统一的设计模型和相关设计标准,使用EPICS软件作为通讯中间层,设计了全局控制系统、时序和同步控制系统、联锁保护系统,并将原有控制系统改造、集成到J-TEXT CODAC系统中。目前该系统已部署在J-TEXT装置上,在2012年春季以来的多轮实验中运行良好。  相似文献   

3.
This paper describes the timing system designed to control the operation time-sequence and to generate clocks for various sub-systems on J-TEXT tokamak. The J-TEXT timing system is organized as a distributed system which is connected by a tree-structured optical fiber network. It can generate delayed triggers and gate signals (0 μs–4000 s), while providing reference clocks for other sub-systems. Besides, it provides event handling and timestamping functions. It is integrated into the J-TEXT Control, Data Access and Communication (J-TEXT CODAC) system, and it can be monitored and configured by Experimental Physics and Industrial Control System (EPICS). The configuration of this system including tree-structured network is managed in XML files by dedicated management software. This system has already been deployed on J-TEXT tokamak and it is serving J-TEXT in daily experiments.  相似文献   

4.
The Joint Texas Experimental Tokamak (J-TEXT) team has developed a new software toolkit for building Experimental Physics and Industrial Control System (EPICS) control applications called J-TEXT-EPICS. It aims to improve the development efficiency of control applications. With device-oriented features, it can be used to set or obtain the configuration or status of a device as well as invoke methods on a device. With its modularized design, its functions can be easily extended. J-TEXT-EPICS is completely compatible with the original EPICS Channel Access protocol and can be integrated into existing EPICS control systems smoothly. It is fully implemented in C#, thus it will benefit from abundant resources in.NET Framework. The J-TEXT control system is build with this toolkit. This paper presents the design and implementation of J-TEXT EPICS as well as its application in the J-TEXT control system.  相似文献   

5.
ITER CODAC Design identified the need for slow and fast control plant systems, based respectively on industrial automation technology with maximum sampling rates below 100 Hz, and on embedded technology with higher sampling rates and more stringent real-time requirements. The fast system is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and high performance networks (HPN).This contribution presents the engineering design of two prototypes of a fast plant system controller (FPSC), specialized for data acquisition, constrained by ITER technological choices. This prototyping activity contributes to the Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. The prototypes will be built using two different form factors, PXIe and ATCA, with the aim of comparing the implementations. The presented solution took into consideration channel density, synchronization, resolution, sampling rates and the needs for signal conditioning such as filtering and galvanic isolation. The integration of the two controllers in the standard CODAC environment is also presented and discussed. Both controllers contain an EPICS IOC providing the interface to the mini-CODAC which will be used for all testing activities. The alpha version of the FPSC is also presented.  相似文献   

6.
For new control systems development, ITER distributes CODAC Core System that is a software package based on Linux RedHat, and includes EPICS (Experimental Physics and Industrial Control System) as software control system solution. EPICS technology is being widely used for implementing control systems in research experiments and it is a very well tested technology, but presents important lacks to meet fast control requirements. To manage and process massive amounts of acquired data, EPICS requires additional functions such as: data block oriented transmissions, links with speed-optimized data buffers and synchronization mechanisms not based on system interruptions. This EPICS limitation turned out clearly during the development of the Fast Plant System Controller Prototype for ITER based on PXIe platform.In this work, we present a solution that, on the one hand, is completely compatible and based on EPCIS technology, and on the other hand, extends EPICS technology for implementing high performance fast control systems with soft-real time characteristics. This development includes components such as: data acquisition, processing, monitoring, data archiving, and data streaming (via network and shared memory). Additionally, it is important to remark that this system is compatible with multiple Graphics Processing Units (GPUs) and is able to integrate MatLab code through MatLab engine connections. It preserves EPICS modularity, enabling system modification or extension with a simple change of configuration, and finally it enables parallelization based on data distribution to different processing components.With the objective of illustrating the presented solution in an actual tokamak application, we have implemented fundamental tokamak equilibrium quantities such as plasma position, Shafranov shift or internal inductance. The algorithms have been parallelized and implemented for its execution on CPU, GPUs and Matlab, and have been tested using actual magnetic data from the TCV tokamak fast control system.  相似文献   

7.
8.
The ITER Fast Plant System Controller (FPSC) is based on embedded technologies. The FPSC will be devoted to both data acquisition tasks (sampling rates higher than 1 kHz) and control purposes (feedback loop actuators). Some of the essential requirements of these systems are: (a) data acquisition and data preprocessing; (b) interfacing with different networks and high speed links (Plant Operation Network, timing network based on IEEE1588, synchronous data transference and streaming/archiving networks); and (c) system setup and operation using EPICS (Experimental Physics and Industrial Control System) process variables.CIEMAT and UPM have implemented a prototype of FPSC using a PXIe (PCI eXtension for Instrumentation) form factor in a R&D project developed in two phases. The paper presents the main features of the two prototypes developed that have been named alpha and beta. The former was implemented using LabVIEW development tools as it was focused on modeling the FPSC software modules, using the graphical features of LabVIEW applications, and measuring the basic performance in the system. The alpha version prototype implements data acquisition with time-stamping, EPICS monitoring using waveform process variables (PVs), and archiving. The beta version prototype is a complete IOC implemented using EPICS with different software functional blocks. These functional blocks are integrated and managed using an ASYN driver solution and provide the basic functionalities required by ITER FPSC such as data acquisition, data archiving, data pre-processing (using both CPU and GPU) and streaming.  相似文献   

9.
10.
11.
FTU (Frascati Tokamak Upgrade) three-level slow control system has undergone several enhancements during its lifetime, involving essentially the supervisory and medium level, while the lower level is still mainly based on old Westinghouse Numalogic PLCs (Programmable Logic Controller). The legacy PLC controlling the toroidal magnet flywheel generator, named MFG1, is now being replaced with a more modern Siemens Simatic S7 PLC, because of its versatility an the ability to be integrated via standard networking protocol.The upgrade to this family of Siemens PLCs, which in the meantime has been selected as standard by ITER CODAC, has made MFG1 slow control an ideal candidate to deploy ITER CODAC software technologies and architecture to a running plant in an operating tokamak environment. A project has thus been started to port MFG1 control to ITER CODAC I&C architecture using the software package CODAC Core System to interface the PLC with the ITER standard systems for instrumentation and control, Plant System Host (PSH) and Mini-CODAC, developing dedicated HMI (Human–Machine Interface) and realizing the communication layer between MFG1 plant system and FTU supervisor.This paper will give a full account of the project and will report the results that have been obtained up to now, focusing also on the definite advantages provided by a distributed control architecture compared to the supervisor-dependent one still running at FTU, in view of future fusion devices.  相似文献   

12.
The ITER remote handling (RH) system has been divided into 7 major equipment system procurements that deliver complete systems (operator interfaces, equipment controllers, and equipment) according to task oriented functional specifications. Each equipment system itself is an assembly of transporters, power manipulators, telemanipulators, vehicular systems, cameras, and tooling with a need for controllers and operator interfaces.From an operational perspective, the ITER RH systems are bound together by common control rooms, operations team, and maintenance team; and will need to achieve, to a varying degree, synchronization of operations, co-operation on tasks, hand-over of components, and sharing of data and resources. The separately procured RH systems must, therefore, be integrated to form a unified RH system for operation from the RH control rooms.The RH system will contain a heterogeneous mix of specially developed RH systems and off-the-shelf RH equipment and parts. The ITER Organization approach is to define a control system architecture that supports interoperable heterogeneous modules, and to specify a standard set of modules for each system to implement within this architecture. Compatibility with standard parts for selected modules is required to limit the complexity for operations and maintenance. A key requirement for integrating the control system modules is interoperability, and no module should have dependencies on the implementation details of other modules.The RH system is one of the ITER Plant systems that are integrated and coordinated through the hierarchical structure of the ITER CODAC system. It is distinguished from other Plant systems by the man-in-the-loop nature of RH operations and the need for control rooms at a level below the main control room. The RH control system architecture has been designed to also support the central monitoring and coordination of the RH activities.  相似文献   

13.
基于EPICS的运动控制系统   总被引:1,自引:0,他引:1  
介绍了光束线运动控制系统总体设计、MAXv运动控制器在步进和伺服系统中的应用以及基于EPICS的运动控制系统软件,实现了对四刀口狭缝的运动控制,并进行了精度测试和分析.  相似文献   

14.
在加速器控制系统中,PLC大量应用于慢控制和联锁控制。随着工业控制技术的发展,PLC通常采用基于以太网通信方式与上层计算机进行数据交换。采用日本横河公司的FA-M3 PLC和新型CPU模块F3RP61,搭建了一套PLC与EPICS通讯的样机即基于F3RP61的嵌入式IOC。在F3RP61上运行嵌入式EPICS IOC核,使安装了F3RP61模块的FA-M3 PLC成为一种新型的嵌入式IOC,从而将FA-M3 PLC中的I/O数据直接纳入EPICS系统中,简化了系统的结构,降低了开发成本。  相似文献   

15.
The ECRH system of W7-X is composed of 10 independent gyrotron modules. Each module consists of one gyrotron and its peripherals such as power supplies, cooling plants and distributed PLC systems. The fast real-time control functions such as the timing of the two high voltage supplies, trigger pulses, protection, modulation and communication with the central control of W7-X, is implemented in an integrated controller which is described in this paper.As long-term maintainability and sustainability are important for nuclear fusion experiments, the choice fell on an FPGA-based design which is exclusively based on free (as in “freedom”) software and configuration code. The core of the controller consists of a real-time Java virtual machine (JVM) that provides the TCP-IP connectivity as well as more complicated control functions, and which interacts with the gyrotron-specific hardware. Both the gyrotron-specific hardware and the JVM are implemented on the same FPGA, which is the main component of the controller.All 10 controllers are currently completed and operational. All parameters and functions are accessible via Ethernet. Due to the open, FPGA-based design, most hardware modifications can be made via the network as well. This paper discusses the capabilities of the controllers and their integration into the central W7-X control.  相似文献   

16.
以北京正负电子对撞机重大改造工程(BEPCⅡI)中低温控制系统为例,介绍了在实验物理和工业控制系统(EPICS)构架下, 对不同体系结构的设备级控制进行整合的方法及应用软件的开发,使EPICS应用的优势在加速器的控制系统中得到充分的体现.  相似文献   

17.
In ITER, it is important how the CODAC system conducts many plant systems including diagnostic systems. In order to establish necessary communications between the diagnostics systems and the CODAC system, Japan domestic agency (JADA) has proposed the new concept of supervisory system for the diagnostic system based on our experiences in operating plasma diagnostic systems. The supervisory system manages operation sequences, current state and configuration parameters for the measurement. JADA designed the supervisory system satisfying the requirements from both CODAC system and diagnostic systems. In our design, the tool which converts operational steps described as flowcharts into the EPICS (experimental physics and industrial control system) records source codes is introduced. This tool will ensure reduction of the system designers’ efforts. We designed a communication protocol to configure measurement parameters and proposed configuration parameter validation function. We also analyzed the management of the central/local control mode for the diagnostic systems. The function which selects the adequate limit values and consistency check algorithms in accordance with the conditions of the diagnostics system is proposed. JADA will develop a prototype of the supervisory system and validate the design in 2013.  相似文献   

18.
随着J-TEXT装置的发展,原有的数据采集系统在稳定性、模块化、采样率等方面已不能满足装置运行的需要,所以需建立一套新的数据采集系统来满足实验需求。本文介绍了基于PXI Express的托卡马克分布式高速同步数据采集系统的设计与实现。系统的采集单元由PXIe机箱NI PXIe-1062Q、PXIe控制器NI PXIe-8133和高速同步数据采集卡NI PXIe-6368组成,兼容ITER CODAC最新标准,具有良好的机械封装性、模块化程度高和高采样率等优点。系统采用同步差分采集方式采集实验数据,并将数据存储于核聚变领域通用的MDSplus数据库中。测试和使用结果表明,系统能在2 MSps采样率下连续稳定工作,可较好地满足装置运行的需要。  相似文献   

19.
介绍了一个100MeV直线加速器(LINAC)的控制系统,该系统采用分布式控制体系结构,采用大型分布式控制软件EPICS作为开发平台.描述了系统的构成、EPICS的软件结构、控制原理及其在LINAC控制中的应用.  相似文献   

20.
A monochromator is important to a beamline for desired monochromatic light. There are three water-cooled double crystal monochromators(DCMs) commissioned in the phase-I beamlines of Shanghai Synchrotron Radiation Facility(SSRF). In this paper, the mechanical principle of the DCMs is introduced. A control system for the monochromator based on the standard architecture for SSRF beamlines is described. To achieve the control requirement precisely, the hardware includes VME(Versa Module Eurocard)-based controller for stepper motors, RS-232-based controllers for micropositioning and piezoelectric actuators. The software is developed with EPICS(Experimental Physics and Industrial Control System) package. Test results have revealed the stability and reliability of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号