首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results from field testing of a unique approach to the navigation of a fleet of autonomous underwater vehicles (AUVs) using only onboard sensors and information provided by a moving surface ship. The approach, considered moving short‐baseline (MSBL) navigation, uses two transponders mounted on a single surface ship that alternately broadcast acoustic messages containing one of the parameters of the kinematic state of the surface ship. The broadcasts are initiated according to a predefined schedule so that the one‐way travel time (OWTT) of the acoustic messages may be used to determine the range to the transponder. Each AUV in the fleet uses the surface ship state measurements and ranges provided by the acoustic messages in two extended Kalman filters (EKFs) for state estimation. The first EKF merges the intermittent surface ship state measurements with a kinematic model to estimate the state of the surface ship. This is necessary because the presented approach uses 13‐bit acoustic messages as opposed to the more commonly used 32‐byte messages, which allow the full state to be encoded in a single broadcast. The second EKF uses the current surface ship state estimate to properly interpret the acoustic ranges, combining them with a kinematic model to estimate the state of the AUV itself. Numerous MSBL navigation experiments were compared against a more traditional approach using a long‐baseline (LBL) array of transponders and OWTT acoustic ranging. The results of all tests were verified by independent LBL measures of position.  相似文献   

2.
This paper presents a multi‐autonomous underwater vehicle system capable of cooperatively and autonomously tracking and following marine targets (i.e., fish) tagged with an acoustic transmitter. The AUVs have been equipped with stereo‐hydrophones that receive signals broadcasted by the acoustic transmitter tags to enable real‐time calculation of bearing‐to‐tag and distance‐to‐tag measurements. These measurements are shared between AUVs via acoustic modem and fused within each AUV's particle filter for estimating the target's position. The AUVs use a leader/follower multi‐AUV control system to enable the AUVs to drive toward the estimated target state by following collision‐free paths. Once within the local area of the target, the AUVs circumnavigate the target state until it moves to another area. The system builds on previous work by incorporating a new SmartTag package that can be attached to an individual's dorsal fin. The SmartTag houses a full inertial measurement unit (INU), video logger, acoustic transmitter, and timed release mechanism. After real‐time AUV tracking experiments, the SmartTag is recovered. Logged IMU data are fused with logged AUV‐obtained acoustic tag measurements within a particle filter to improve state estimation accuracy. This improvement is validated through a series of multi‐AUV shark and boat tracking experiments conducted at Santa Catalina Island, California. When compared with previous work that did not use the SmartTag package, results demonstrated a decrease in mean position estimation error of 25–75%, tag orientation estimation errors dropped from 80° to 30° , the sensitivity of mean position error with respect to distance to the tag was less by a factor of 50, and the sensitivity of mean position error with respect to acoustic signal reception frequency to the tag was 25 times less. These statistics demonstrate a large improvement in the system's robustness when the SmartTag package is used.  相似文献   

3.
We present a cooperative bathymetry-based localization approach for a team of low-cost autonomous underwater vehicles (AUVs), each equipped only with a single-beam altimeter, a depth sensor and an acoustic modem. The localization of the individual AUV is achieved via fully decentralized particle filtering, with the local filter’s measurement model driven by the AUV’s altimeter measurements and ranging information obtained through inter-vehicle communication. We perform empirical analysis on the factors that affect the filter performance. Simulation studies using randomly generated trajectories as well as trajectories executed by the AUVs during field experiments successfully demonstrate the feasibility of the technique. The proposed cooperative localization technique has the potential to prolong AUV mission time, and thus open the door for long-term autonomy underwater.  相似文献   

4.
Survey-class autonomous underwater vehicles (AUVs) typically rely on Doppler Velocity Logs (DVL) for precision localization near the seafloor. In cases where the seafloor depth is greater than the DVL bottom-lock range, localizing between the surface and the seafloor presents a localization problem since both GPS and DVL observations are unavailable in the mid-water column. This work proposes a solution to this problem that exploits the fact that current profile layers of the water column are near constant over short time scales (in the scale of minutes). Using observations of these currents obtained with the Acoustic Doppler Current Profiler mode of the DVL during descent, along with data from other sensors, the method discussed herein constrains position error. The method is validated using field data from the Sirius AUV coupled with view-based Simultaneous Localization and Mapping (SLAM) and on descents up to 3km deep with the Sentry AUV.  相似文献   

5.
基于移动长基线的多AUV 协同导航   总被引:5,自引:0,他引:5  
基于扩展卡尔曼滤波(EKF)理论研究了多AUV 协同导航定位的移动长基线算法.移动长基线多AUV 协同导航结构中,主AUV 内部装备高精度导航设备,从AUV 内部装备低精度导航设备,外部均装备水声装置测量 相对位置关系,利用移动长基线算法融合内部和外部传感器信息,实时获取从AUV 的位置信息.建立了协同导航 系统数学模型,设计了EKF 协同导航算法,在各种测试情况下通过仿真验证了所推导的分析结果,对EKF 和几何 解方程算法的导航效果进行了比较.研究结果表明,以主AUV 作为移动的长基线节点时,通过EKF 算法可以显著 提高群体的导航定位精度.  相似文献   

6.
This paper extends the progress of single beacon one‐way‐travel‐time (OWTT) range measurements for constraining XY position for autonomous underwater vehicles (AUV). Traditional navigation algorithms have used OWTT measurements to constrain an inertial navigation system aided by a Doppler Velocity Log (DVL). These methodologies limit AUV applications to where DVL bottom‐lock is available as well as the necessity for expensive strap‐down sensors, such as the DVL. Thus, deep water, mid‐water column research has mostly been left untouched, and vehicles that need expensive strap‐down sensors restrict the possibility of using multiple AUVs to explore a certain area. This work presents a solution for accurate navigation and localization using a vehicle's odometry determined by its dynamic model velocity and constrained by OWTT range measurements from a topside source beacon as well as other AUVs operating in proximity. We present a comparison of two navigation algorithms: an Extended Kalman Filter (EKF) and a Particle Filter(PF). Both of these algorithms also incorporate a water velocity bias estimator that further enhances the navigation accuracy and localization. Closed‐loop online field results on local waters as well as a real‐time implementation of two days field trials operating in Monterey Bay, California during the Keck Institute for Space Studies oceanographic research project prove the accuracy of this methodology with a root mean square error on the order of tens of meters compared to GPS position over a distance traveled of multiple kilometers.  相似文献   

7.
In this paper,we investigate the synchronization control of multiple autonomous underwater vehicles (AUVs),considering both state feedback and output feedback cases.Treating multiple AUVs as a graph,we define the tracking error of each AUV with both its own tracking error and the relative position errors with respect to its neighbors taken into account.Lyapunov analysis is used to derive the control law for each AUV.For the output feedback case,a passive filter is used to compensate for the unknown relative velocity errors among AUVs,and an observer is employed to estimate the velocity of the AUV itself.Rigid mathematical proof is provided for the proposed algorithms for both state feedback and output feedback cases.Simulations are provided to demonstrate the effectiveness of the proposed approach.It is shown that,the synchronization error is smaller in the case of considering the relative errors between AUVs than in the case of considering the tracking error of the single AUV only.  相似文献   

8.
基于凸优化算法的无人水下航行器协同定位   总被引:1,自引:1,他引:0  
In this paper, a cooperative localization algorithm for autonomous underwater vehicles (AUVs) is proposed. A ``parallel" model is adopted to describe the cooperative localization problem instead of the traditional ``leader-follower" model, and a linear programming associated with convex optimization method is used to deal with the problem. After an unknown-but-bounded model for sensor noise is assumed, bearing and range measurements can be modeled as linear constraints on the configuration space of the AUVs. Merging these constraints induces a convex polyhedron representing the set of all configurations consistent with the sensor measurements. Estimates for the uncertainty in the position of a single AUV or the relative positions of two or more nodes can then be obtained by projecting this polyhedron onto appropriate subspaces of the configuration space. Two different optimization algorithms are given to recover the uncertainty region according to the number of the AUVs. Simulation results are presented for a typical localization example of the AUV formation. The results show that our positioning method offers a good localization accuracy, although a small number of low-cost sensors are needed for each vehicle, and this validates that it is an economical and practical positioning approach compared with the traditional approach.  相似文献   

9.
Consider the case where autonomous underwater vehicles (AUVs) are deployed to monitor a 3D underwater environment. This paper tackles the problem of guiding all AUVs to the destination while not colliding with a priori unknown 3D obstacles. Suppose that among all AUVs, only the leader AUV has an ability of locating itself, while accessing a destination location. A follower, an AUV that is not a leader, has no sensors for locating itself. Every follower can only measure the relative position of its neighbor AUVs utilizing its sonar sensors. Our paper addresses distributed controls, so that multiple followers track the leader while preserving communication connectivity. We design controls, so that all AUVs reach the destination safely, while maintaining connectivity in cluttered 3D environments. To the best of our knowledge, our article is novel in developing 3D underwater guidance controls, so that all AUVs equipped with sonar sensors are guided to reach a destination in a priori unknown cluttered environments. MATLAB simulations are used to validate the proposed guidance scheme in underwater environments with many obstacles.  相似文献   

10.
This paper presents two acoustic-based techniques for Autonomous Underwater Vehicle (AUV) navigation within an underwater network of fixed sensors. The proposed algorithms exploit the positioning measurements provided by an Ultra-Short Base Line (USBL) transducer on-board the vehicle to aid the navigation task. In the considered framework the acoustic measurements are embedded in the communication network scheme, causing time-varying delays in ranging with the fixed nodes. The results presented are obtained with post-processing elaborations of the raw experimental data collected during the CommsNet13 campaign, organized and scientifically led by the NATO Science and Technology Organization Centre for Maritime Research and Experimentation (CMRE). The experiment involved several research institutions and included among its objectives the evaluation of on-board acoustic USBL systems for navigation and localization of AUVs. The ISME groups of the Universities of Florence and Pisa jointly participated to the experiment with one Typhoon class vehicle. This is a 300 m depth rated AUV with acoustic communication capabilities originally developed by the two groups for archaeological search in the framework of the THESAURUS project. The CommsNet13 Typhoon, equipped with an acoustic modem/USBL head, navigated within the fixed nodes acoustic network deployed by CMRE. This allows the comparison between inertial navigation, acoustic self-localization and ground truth represented by GPS signals (when the vehicle was at the surface).  相似文献   

11.
This paper presents a novel approach to the design of globally asymptotically stable (GAS) position and velocity filters for Autonomous Underwater Vehicles (AUVs) based directly on the sensor readings of an Ultra-short Baseline (USBL) acoustic array system and a Doppler Velocity Log (DVL). The proposed methodology is based on an equivalent linear time-varying (LTV) system that fully captures the dynamics of the nonlinear system, allowing for the use of powerful linear system analysis and filtering design tools that yield GAS filter error dynamics. Numerical results using Monte Carlo simulations and comparison to the Bayesian Cramér Rao Bound (BCRB) reveal that the performance of the proposed filter is tight to this theoretical estimation error lower bound. In comparison with other approaches, the present solution achieves the same level of performance of the Extended Kalman Filter (EKF), which does not offer GAS guarantees, and outperforms other classical filtering approaches designed in inertial coordinates instead of the body-fixed coordinate frame.  相似文献   

12.
A critical challenge for autonomous underwater vehicles (AUVs) is the docking operation for applications such as sleeping under the mother ship, recharging batteries, transferring data, and new mission downloading. The final stage of docking at a unidirectional docking station requires the AUV to approach while keeping the pose (position and orientation) of the vehicle within an allowable range. The appropriate pose therefore demands a sensor unit and a control system that have high accuracy and robustness against disturbances existing in a real-world underwater environment. This paper presents a vision-based AUV docking system consisting of a 3D model-based matching method and Real-time Multi-step Genetic Algorithm (GA) for real-time estimation of the robot’s relative pose. Experiments using a remotely operated vehicle (ROV) with dual-eye cameras and a separate 3D marker were conducted in a small indoor pool. The experimental results confirmed that the proposed system is able to provide high homing accuracy and robustness against disturbances that influence not only the captured camera images but also the movement of the vehicle. A successful docking operation using stereo vision that is new and novel to the underwater vehicle environment was achieved and thus proved the effectiveness of the proposed system for AUV.  相似文献   

13.
针对由捷联惯导(SINS)、多普勒测速仪(DVL)以及深度传感器组成的自主水下航行器(AUV)组合导航系统,当DVL测量距离无法达到海底的情况下,洋流是该系统主要误差源之一的问题,在SINS/DVL组合导航算法的基础上,提出了一种在原算法中加入洋流信息提高系统导航定位精度的方法,并将以上两种导航算法解算出的AUV位置信息进行仿真对比,仿真结果表明:与未考虑洋流信息的算法相比,加入洋流信息的算法能够有效提高AUV的定位精度。  相似文献   

14.
利用自主式水下航行器(Autonomous Underwater Vehicle, AUV)对水下多目标进行协同探测是目前海洋技术领域的研究热点。本文主要研究在水下三维区间内的多AUV任务分配与协作探测机制,建立了以每个AUV能量耗费与能耗均衡为约束条件的水下三维空间中的多旅行商(Multiple Traveling Salesman Problem, MTSP)问题模型,利用遗传算法(Genetic Algorithm, GA)对该NP-Complete问题进行启发式求解,同时设计了考虑巡航总路径及访问目标数的适应度函数以提高多AUV间的能耗均衡性,实现多个AUV对多个水下目标的优化协同探测。最后本文利用Matlab R2014a软件对多AUV任务协作与多目标探测机制进行了仿真,仿真结果验证了该方法能够均衡多AUV多目标探测问题的能量消耗,进而提高巡航速度和生命周期。  相似文献   

15.
The paper deals with the distributed acoustic localization of teams of autonomous underwater vehicles (AUVs) and proposes a novel algorithm, real-time ray-tracing (RT2), for evaluating the distance between any pair of AUVs in the team. The technique, based on a modified formulation of the non-linear sound-ray propagation laws, allows efficient handling of the distorted and reflected acoustic ray paths. The proposed algorithm can be easily implemented on-board of low-cost AUVs, requiring the presence, on each vehicle, of an acoustic modem and a pair of look-up tables, a-priori built on the basis of the assumed knowledge of the depth-dependent sound velocity profile. On such a basis, every AUV can compute its distance w.r.t. to any other neighbor team member, through time-of-flight measurements and the exchanges of depth information only.  相似文献   

16.
Abstract: This paper describes a new method for classifying three-dimensional environments in real time using Kohonen self-organizing maps (SOMs). The method has been developed to enable autonomous underwater vehicles (AUVs) to navigate without human intervention in previously unexplored subsea environments, but can be generalized to unmanned aircraft equipped with appropriate sensors flying over unchartered terrains, or spacecraft exploring remote planets, subject to appropriate pre-mission training. The method involves a fuzzy comparison between a SOM created in real time using accumulated sensor data and a class atlas of SOMs derived from previously trained and manually classified environments. This enables mission- and environment-appropriate AUV navigation strategies to be selected in real time. Simulation results using real-world, three-dimensional environment data acquired from digital elevation maps are presented, which demonstrate the potential of the method.  相似文献   

17.
18.
为了满足水下航行远航程和长时间的要求,远航程自主水下航行器(AUV)采用以SINS导航为主、DVL导航为辅、卫星导航定期修正的方式来提高导航的精度和可靠性;文中研究了一种采用惯性测量器件(IMU)、GPS卫星定位导航模拟器、GPS接收机、多普勒测速仪仿真装置、ADI/RTS仿真工作站和水压模拟器构成的采用SINS/GPS/DVL组合导航方式的AUV导航半实物仿真系统,并进行了全航程仿真实验;仿真试验的结果表明,所设计的半实物仿真系统方案可行,可用于更高置信度的AUV组合导航仿真实验。  相似文献   

19.
Underwater navigation performance of Autonomous Underwater Vehicles (AUVs) strongly affects the quality of the collected data. Scientific literature extensively addresses the AUV tracking and self-localisation problems. However, no standard evaluation methods for vehicle navigation exist. Therefore, the authors’ visionary perspective is to develop and implement an Underwater Test Range (UTR) to certify the vehicle compliance with long-term underwater navigation. This paper describes a first step along this research path represented by an in field validation of such conceived measurement network. Experiments are soundly based on extensive simulation analysis presented in previous works. In particular, an underwater network composed of acoustic modems with Ultra Short BaseLine capabilities is deployed as measurement rig. This setup, through bearing-only measurements, allows the tracking of an Autonomous Surface Vehicle (ASV) equipped with Differential GPS as position ground truth. Results show how the proposed methodology performs in a real marine scenario with challenging conditions due to shallow waters and magnetically noisy environment.  相似文献   

20.
We developed an environmentally adaptive under-ice navigation framework that was deployed in the Arctic Beaufort Sea during the United States Navy Ice Exercise in March 2020 (ICEX20). This navigation framework contained two subsystems developed from the ground up: (1) an on-board hydrodynamic model-aided navigation (HydroMAN) engine, and (2) an environmentally and acoustically adaptive integrated communication and navigation network (ICNN) that provided acoustic navigation aiding to the former. The HydroMAN synthesized measurements from an inertial navigation system (INS), ice-tracking Doppler velocity log (DVL), ICNN and pressure sensor into its self-calibrating vehicle flight dynamic model to compute the navigation solution. The ICNN system, which consisted of four ice buoys outfitted with acoustic modems, trilaterated the vehicle position using the one-way-travel-times (OWTT) of acoustic datagrams transmitted by the autonomous underwater vehicle (AUV) and received by the ice buoy network. The ICNN digested salinity and temperature information to provide model-assisted real-time OWTT range conversion to deliver accurate acoustic navigation updates to the HydroMAN. To decouple the contributions from the HydroMAN and ICNN subsystems towards a stable navigation solution, this article evaluates them separately: (1) HydroMAN was compared against DVL bottom-track aided INS during pre-ICEX20 engineering trials where both systems provided similar accuracy; (2) ICNN was evaluated by conducting a static experiment in the Arctic where the ICNN navigation updates were compared against GPS with ICNN error within low tens of meters. The joint HydroMAN-ICNN framework was tested during ICEX20, which provided a nondiverging high-resolution navigation solution—with the majority of error below 15 m—that facilitated a successful AUV recovery through a small ice hole after an 11 km untethered run in the upper and mid-water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号