首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
雨天环境会造成图像模糊、变形,大幅降低图像质量,对于后续的图像分析和应用造成严重影响.单幅图像的去雨算法研究成为热点,然而现有算法存在过度平滑、颜色失真和复杂雨水图像复原能力差等诸多问题,去雨问题难以有效解决.本文提出一种新颖的多尺度沙漏结构的单幅图像去雨算法.首先,针对雨的特征复杂多样的特点,采用多尺度沙漏网络结构,...  相似文献   

2.
雨天作为较常见的一种自然天气情况,会极大地影响户外视觉系统所拍摄到的图像和视频数据的成像质量并制约后续高级计算机视觉任务的性能;针对目前除雨算法存在伪影残留、细节丢失等问题,为了充分提取图像特征,有效去除雨条纹,提高除雨效率,提出一种新颖的单阶段深度学习除雨方法;采用高效卷积和跨尺度自注意力相结合的方式,弥补纯卷积网络无法满足的全局特征建模能力;嵌入多尺度空间特征融合模块,有效增加网络的感受野,增强网络对不同分布的雨条纹特征的学习能力;设计了一种混合损失函数,利用各损失函数的优势来弥补单一损失函数表现出来的缺陷;经过在不同类型数据集上的大量实验证明,该算法不仅能够有效去除雨条纹,充分保留背景细节,而且处理速度也有显著的提升。  相似文献   

3.
由于密度不同的雨对图像造成的遮挡不同,图像去雨一直都是一项极具挑战性的任务。目前,基于深度学习的图像去雨算法已经成为主流。然而,多数深度学习的架构都是通过堆叠卷积层来设计的,执行去雨任务后图像仍存在着大小不一的雨痕,这些方法并不能很好地关注训练中雨图的局部信息和上下文信息。为了解决上述问题,本文设计一种基于多通道分离整合的卷积神经网络用于图像去雨。第一步通过通道分离,再利用卷积层间的层级连接,构成多尺度模块,最终将不同通道的输出进行整合。该模块可以增大感受野,探索特征图之间的空间信息,更好地提取特征。第二步利用渐进网络来反复计算挖掘上下文信息,能够很好关联到全局特征。整体模型易于实施,可以端对端训练。在常用的数据集以及自建的自动驾驶雨天数据集上的大量实验表明,本文方法比现有方法取得了明显的改进。  相似文献   

4.
目的 现有的去雨方法存在去雨不彻底和去雨后图像结构信息丢失等问题。针对这些问题,提出多尺度渐进式残差网络(multi scale progressive residual network, MSPRNet)的单幅图像去雨方法。方法 提出的多尺度渐进式残差网络通过3个不同感受野的子网络进行逐步去雨。将有雨图像通过具有较大感受野的初步去雨子网络去除图像中的大尺度雨痕。通过残留雨痕去除子网络进一步去除残留的雨痕。将中间去雨结果输入图像恢复子网络,通过这种渐进式网络逐步恢复去雨过程中损失的图像结构信息。为了充分利用残差网络的残差分支上包含的重要信息,提出了一种改进残差网络模块,并在每个子网络中引入注意力机制来指导改进残差网络模块去雨。结果 在5个数据集上与最新的8种方法进行对比实验,相较于其他方法中性能第1的模型,本文算法在5个数据集上分别获得了0.018、0.028、0.012、0.007和0.07的结构相似度(structural similarity, SSIM)增益。同时在Rain100L数据集上进行了消融实验,实验结果表明,每个子网络的缺失都会造成去雨性能的下降,提出的多尺度渐进式网...  相似文献   

5.
目的 雨天户外采集的图像常常因为雨线覆盖图像信息产生色变和模糊现象。为了提高雨天图像的质量,本文提出一种基于自适应选择卷积网络深度学习的单幅图像去雨算法。方法 针对雨图中背景误判和雨痕残留问题,加入网络训练的雨线修正系数(refine factor,RF),改进现有雨图模型,更精确地描述雨图中各像素受到雨线的影响。构建选择卷积网络(selective kernel network,SK Net),自适应地选择不同卷积核对应维度的信息,进一步学习、融合不同卷积核的信息,提高网络的表达力,最后构建包含SK Net、refine factor net和residual net子网络的自适应卷积残差修正网络(selective kernel convolution using a residual refine factor,SKRF),直接学习雨线图和残差修正系数(RF),减少映射区间,减少背景误判。结果 实验通过设计的SKRF网络,在公开的Rain12测试集上进行去雨实验,取得了比现有方法更高的精确度,峰值信噪比(peak signal to noise ratio,PSNR)达到34.62 dB,结构相似性(structural similarity,SSIM)达到0.970 6。表明SKRF网络对单幅图像去雨效果有明显优势。结论 单幅图像去雨SKRF算法为雨图模型中的雨线图提供一个额外的修正残差系数,以降低学习映射区间,自适应选择卷积网络模型提升雨图模型的表达力和兼容性。  相似文献   

6.
在雨天采集的图像通常存在背景物体被雨纹遮挡、图像变形等影响图像质量的现象,对后续图像分析及应用造成严重影响。近年来,已经提出了许多基于深度学习的去雨算法并获得了较好的效果。由于真实雨图的无雨纹干净背景图采集非常困难,大多数算法都采用监督学习即在含有配对标签的合成雨图数据集上进行模型训练。由于合成雨图和真实雨图中雨纹的亮度、透明度、形状等存在巨大差异,基于监督学习的去雨算法对真实雨图的泛化能力普遍较差。为提高去雨模型对真实雨图的去雨效果,提出了一种基于半监督学习的单幅图像去雨算法。该算法在模型训练过程中加入合成雨图和真实雨图并最小化两个输入图像转换成的特征向量的一阶信息和二阶统计信息差异,使两者特征分布一致。同时,针对雨纹复杂多样的特点,引入多尺度网络以获取更丰富的图像特征,并提高模型性能。实验结果表明,所提算法在Rain100H合成雨图测试集上相较JDNet、Syn2Real等算法在峰值信噪比(PSNR)和结构相似度(SSIM)上分别至少提升了0.66 dB、0.01,在去除雨纹的同时能最大限度保留图像细节和颜色信息;并且由于减少了分布差异,该算法在真实雨图测试集上的去雨效果明显优于现有的JDNet、Syn2Real等去雨算法,具有较强的泛化能力。所提算法可以应用于现有的基于监督学习的去雨算法并显著提高其去雨效果,拥有较高的独立性。  相似文献   

7.
雨天等恶劣天气将造成图像质量的严重退化,进而影响计算机视觉算法的准确性.为了更好地提取多尺度雨痕特征,恢复图像含有的重要细节信息,提出一种基于多分辨率上下文聚合网络的单幅图像去雨方法.首先利用混洗操作将单一分辨率输入图像转化为多空间分辨率的输入图像,在低空间分辨率中使网络迅速扩大接受场,而在高空间分辨率下提取更加精细的...  相似文献   

8.
雨天环境下的雨线导致图像内容被遮挡,严重影响人眼的视觉效果和后续系统的处理性能。目前主流的深度学习方法为了提升处理性能,均以复杂的网络结构和较大的参数量为代价,导致相关方法难以服务于实际应用。为此,文中提出一种新的深度邻近连接网络结构。它通过关注深度网络中所学特征图之间的关系,采用融合操作将邻近特征图进行连接,以获得更加丰富和有效的特征表示。实验数据表明,所提方法在3个公开合成数据集及真实有雨图像上的主客观处理效果、模型参数量和运行时间等相关性能都有所提升。在合成数据集Rain100H上的平均结构相似性(SSIM)值达到0.84,在合成数据集Rain100L和Rain1 200上的平均SSIM值分别达到0.96和0.91。在真实有雨图像上,所提方法在有效去除前景雨线的同时,能够保护更完整的背景图像信息,从而获得更好的主观视觉效果。相比于同时期的深度学习方法JORDER,文中方法在保证相近的处理效果的前提下,模型参数量和CPU运行时间分别降低了一个和两个数量级。实验数据充分说明,通过将网络中邻近特征图进行融合,能够获取更加有效的特征表示。因此,所提方法虽然仅使用较少的模型参数和简洁的神经...  相似文献   

9.
有雨图像往往丢失大量的特征及细节信息,严重影响视觉效果和目标检测.针对有雨图像,本文采用图像显著性检测来寻找有雨区域,确定待修复区域,设计了多尺度融合生成对抗网络(Multiscale Fusion Generative Adversarial Network,MsF-GAN)进行图像去雨,在生成器的12/14/16网...  相似文献   

10.
针对当前已有的去雾方法容易造成天空区域存在光晕以及色彩失真的现象,提出了一种多尺度卷积结合大气散射模型的单幅图像去雾算法。将原始有雾图像与三个不同尺度的卷积核进行卷积,经过一系列特征学习后得到粗略的传播图,然后使用引导滤波器对其进行优化,得到精细化后的传播图。利用粗传播图和有雾图像计算出全局大气光。根据大气散射模型反推出无雾清晰图像。实验结果表明,该方法对天空区域的处理更加自然,在图像的纹理细节以及颜色失真上有较好的效果。  相似文献   

11.
针对加性高斯白噪声的图像信噪比低, 图像细节丢失问题, 结合现有卷积神经网络算法, 提出了一种基于残差密集块的卷积神经网络图像去噪模型. 该模型通过引入多级残差网络和密集连接, 并对整体网络使用Leaky ReLU激活函数, 去除不同等级强度噪声的同时, 更好保留图像的有效信息, 有效避免特征丢失. 本文提出算法和深度卷积神经网络残差学习(DnCNN)模型对比, 本文提出的模型在Set12和BSD68测试集上峰值信噪比平均提升了约0.12 dB, 结构相似性平均提升了约0.008 6, 通过观察实验效果, 表明该模型能够充分提取图像特征, 保留图像细节, 同时降低网络计算的复杂度.  相似文献   

12.
针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提出了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结构来增加网络的特征利用率,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张率的扩张卷积,使网络在充分聚合上下文特征信息时不损失空间分辨率,并避免了网格伪影的产生。最后,为了提高算法的去雾能力,将该网络划分为多个阶段,并在每个阶段引入侧输出模块,从而获得更精确的特征信息。实验结果表明,所提出的去雾算法无论是在合成数据集上还是在真实数据集上都取得了较好的去雾效果,恢复的色彩更接近无雾图像,并且定量评价指标峰值信噪比(PSNR)和结构相似性(SSIM)均优于其他对比方法。  相似文献   

13.
为了提高地基云图分割的精度,提出一种对称式密集连接卷积神经网络的云图分割方法进行地基云图分割研究。提出的新的网络结构通过普通卷积层提取地基云图特征,通过连续的密集连接块和上采样模块对特征图进一步处理,通过并联方式融合网络浅层和网络深层的特征图从而实现对地基云图精确的分割。其中,密集块中采用跨层连接的方式实现了网络中所用层的特征传递,使得云图特征得到复用,同时一定程度上减轻了训练过程中的梯度消失问题,通过并联浅层网络和深层网络的特征图实现了对地基云图的进一步精确分割。实验结果表明,该方法与其他用于地基云图分割的机器学习方法相比,能够提高地基云图的分割准确率,具有良好的泛化效果。  相似文献   

14.
陈清江  张雪 《自动化学报》2021,47(7):1739-1748
针对现有的单幅图像去雾问题,提出了一种基于并联卷积神经网络的单幅图像去雾算法,以端对端的方式实现图像去雾.首先,使用雾天RGB图像YUV变换的Y、U和V分量构建并联卷积神经网络,自适应获得雾霾特征;网络结构由两个子网络组成,较深的网络预测清晰图像的亮度通道,较浅的网络预测色度通道和饱和度通道.最后,采用递归双边滤波,对...  相似文献   

15.
王亚群  戴华林  王丽  李国燕 《计算机工程》2021,47(11):262-267,291
为解决目前单目图像深度估计方法存在的精度低、网络结构复杂等问题,提出一种密集卷积网络结构,该网络采用端到端的编码器和解码器结构。编码器引入密集卷积网络DenseNet,将前面每一层的输出作为本层的输入,在加强特征重用和前向传播的同时减少参数量和网络计算量,从而避免梯度消失问题发生。解码器结构采用带有空洞卷积的上投影模块和双线性插值模块,以更好地表达由编码器所提取的图像特征,最终得到与输入图像相对应的估计深度图。在NYU Depth V2室内场景深度数据集上进行训练、验证和测试,结果表明,该密集卷积网络结构在δ<1.25时准确率达到0.851,均方根误差低至0.482。  相似文献   

16.
现有基于卷积神经网络的单图像超分辨率模型存在三个限制。理论上存在无限的HR图像,可以下采样到相同的LR图像,可能的函数空间非常大。因为现实世界潜在的下采样方法是未知的,使用特定方法配对的数据训练的模型在实际应用中泛化能力差,产生适应性问题。忽视残差分支的高频层次特征。针对上述问题,提出双重回归方案。除了学习从LR到HR图像的原始回归映射之外,额外学习一个对偶回归映射来估计下采样核并重建LR图像,形成一个闭环提供额外的监督,并在残差结构上引入了傅里叶变换,增强模型对高频信息的表达能力。相比其他先进模型以更少的参数重建HR图像,且拥有丰富的高频纹理细节。  相似文献   

17.
卷积网络深度对大规模图像识别的准确性有不可忽视的影响.使用具有非常小(3×3)卷积滤波器的架构,我们对深度不断增长的网络进行了全面评估.通过将深度推到16–19重量层可以实现对现有技术配置的显着改进.通过比对其他卷积滤波器架构的卷积网络,我们验证了我们提出的网络对大规模图像识别的改进效果.同时为了避免训练数据集内在的偏...  相似文献   

18.
针对经典的基于卷积神经网络的单幅图像超分辨率重建方法网络较浅、提取的特征少、重建图像模糊等问题,提出了一种改进的卷积神经网络的单幅图像超分辨率重建方法,设计了由密集残差网络和反卷积网络组成的新型深度卷积神经网络结构。原始低分辨率图像输入网络,利用密集残差学习网络获取更丰富的有效特征并加快特征梯度流动,其次通过反卷积层将图像特征上采样到目标图像大小,再利用密集残差学习高维特征,最后融合不同卷积核提取的特征得到最终的重建图像。在Set5和Set14数据集上进行了实验,并和Bicubic、K-SVD、SelfEx、SRCNN等经典重建方法进行了对比,重建出的图像在整体清晰度和边缘锐度方面更好,另外峰值信噪比(PSNR)平均分别提高了2.69?dB、1.68?dB、0.74?dB和0.61?dB。实验结果表明,该方法能够获取更丰富的细节信息,得到更好的视觉效果,达到了图像超分辨率的增强任务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号