首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we propose a bio-inspired architecture for a quadruped robot that is able to initiate/stop locomotion; generate different gaits, and to easily select and switch between the different gaits according to the speed and/or the behavioral context. This improves the robot stability and smoothness while locomoting.We apply nonlinear oscillators to model Central Pattern Generators (CPGs). These generate the rhythmic locomotor movements for a quadruped robot. The generated trajectories are modulated by a tonic signal, that encodes the required activity and/or modulation. This drive signal strength is mapped onto sets of CPG parameters. By increasing the drive signal, locomotion can be elicited and velocity increased while switching to the appropriate gaits. This drive signal can be specified according to sensory information or set a priori.The system is implemented in a simulated and real AIBO robot. Results demonstrate the adequacy of the architecture to generate and modulate the required coordinated trajectories according to a velocity increase; and to smoothly and easily switch among the different motor behaviors.  相似文献   

2.
This paper proposes a new legged walking method for a novel passive-spine hexapod robot. This robot consists of several body segments connected by passive body joints. Each of the body segments carries two 1-DoF (degree of freedom) actuated legs. The robot is capable of achieving planar legged walking by rapidly abducting and adducting its legs. To model the mobility of a robot based on this simple design, the candidate configurations from all possible configurations are first selected in a mobility analysis of the robot based on the screw theory. All the feasible sequences of these candidate configurations are then searched to form planar locomotion gaits. Next, locomotive performance of the gaits is analyzed. Finally, the proposed locomotion design and gait planning methods are verified through simulations and experiments.  相似文献   

3.
Snake robots are mostly designed based on single mode locomotion. However, single mode gait most likely could not work effectively when the robot is subject to an unstructured working environment with different measures of terrain complexity. As a solution, mixed mode locomotion is proposed in this paper by synchronizing two types of gaits known as serpentine and wriggler gaits used for non-constricted and narrow space environments, respectively, but for straight line locomotion only. A gait transition algorithm is developed to efficiently change the gait from one to another. This study includes the investigation on kinematics analysis followed by dynamics analysis while considering related structural constraints for both gaits. The approach utilizes the speed of the serpentine gait for open area locomotion and exploits the narrow space access capability of the wriggler gait. Hence, it can increase motion flexibility in view of the fact that the robot is able to change its mode of locomotion according to the working environment.  相似文献   

4.
This paper presents a method for generating gaits for a one-legged articulated hopping robot. A static optimization procedure produces the initial joint velocities for the flight phase, using the principle of conservation of angular momentum and assuming (nearly) passive flight. Two novel objective functions for this static optimization enable one to choose different gaits by simply changing a few parameters. A dynamic optimization procedure yields a solution for the flight trajectory that minimizes control effort. The stance phase (when the foot is touching the ground) becomes a standard two point boundary value problem, also solved with a dynamic optimization procedure. During the stance phase, the physical joint limitations, ground reaction forces, and the trajectory of the zero-moment point all constrain the solution. After these single-phase optimizations, a complete-cycle optimization procedure, incorporating both flight and stance phases, further reduces the control effort and balances the motion phases. In simulation, the leg hops on even ground and up stairs, exhibiting energy-efficient and intuitively satisfying gaits.  相似文献   

5.
Autonomous robots are leaving the laboratories to master new outdoor applications, and walking robots in particular have already shown their potential advantages in these environments, especially on a natural terrain. Gait generation is the key to success in the negotiation of natural terrain with legged robots; however, most of the algorithms devised for hexapods have been tested under laboratory conditions. This paper presents the development of crab and turning gaits for hexapod robots on a natural terrain characterized by containing uneven ground and forbidden zones. The gaits we have developed rely on two empirical rules that derive three control modules that have been tested both under simulation and by experiment. The geometrical model of the SILO-6 walking robot has been used for simulation purposes, while the real SILO-6 walking robot has been used in the experiments. This robot was built as a mobile platform for a sensory system to detect and locate antipersonnel landmines in humanitarian demining missions.  相似文献   

6.
Up to now, walking robots have been working outdoors under favorable conditions and using very large stability margins to cope with natural environments and intrinsic robot dynamics that can cause instability in these machines when they use statically-stable gaits. The result has been very slow robots prone to tumble down in the presence of perturbations. This paper proposes a novel gait-adaptation method based on the maximization of the Normalized Dynamic Energy Stability Margin. This method enables walking-machine gaits to adapt to internal (robot dynamics) and external (environmental) perturbations, including the slope of the terrain, by finding the gait parameters that maximize robot stability. The adaptation method is inspired in the natural gait adaptation carried out by humans and animals to balance external forces or the effect of sloping terrain. Experiments with the SILO4 quadruped robot are presented and show how robot stability is more robust when the proposed approach is used for different external forces and sloping terrains. Using the proposed gait-adaptation approach the robot is able to withstand external forces up to 58% the robot weight and 25-degree slopes.
E. GarciaEmail:
  相似文献   

7.
五轮铰接式月球机器人的运动学建模   总被引:8,自引:1,他引:7  
刘方湖  马培荪  曹志奎  姚沁 《机器人》2001,23(6):481-485
本文为在有壕沟、台阶和斜坡的复杂三维地形上行驶的轮式移动机器人提出了一种新 的运动学建模方法:切平面拼接法.该方法的主要思想是用机器人在不同时刻不同斜面上的 运动学模型组成机器人在崎岖不平地面上行驶的复合运动学模型.该建模方法简单,建模的 精确性可以控制.作者用该方法建立了五轮铰接式月球机器人(FWALR)在崎岖不平地面上 行驶的正向和逆向运动学模型,为FWALR机器人在复杂三维地形上的运动控制奠定了基础.  相似文献   

8.
This article deals with the problem of planning and controlling a radially symmetric six-legged walker on an uneven terrain when a smooth time-varying body motion is required. The main difficulties lie on the planning of gaits and foot trajectories. As for the gaits, this article discusses the forward wave gait of a variable duty factor and a variable wave direction. With the commanded body motion, the maximum possible duty factor is computed using the speed limit of the leg swing motion. Guaranteeing this maximum duty factor contributes to obtain higher stability. We prove the “continuity” of this forward wave gait planning algorithm adds the versatility to gaits planned. The foot trajectory planning algorithm dynamically generates a smooth foot trajectory as a function of the instantaneous body motions by modifying standard leg motion templates. The robot can negotiate an uneven terrain by modifying a vertical leg motion by a signal of tactile sensors on the foot. The experiments prove that the robot can successfully track smooth curves with body rotations on an uneven terrain, and thus prove the robustness of the algorithms. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
This paper provides a system overview about ANYmal, a quadrupedal robot developed for operation in harsh environments. The 30 kg, 0.5 m tall robotic dog was built in a modular way for simple maintenance and user-friendly handling, while focusing on high mobility and dynamic motion capability. The system is tightly sealed to reach IP67 standard and protected to survive falls. Rotating lidar sensors in the front and back are used for localization and terrain mapping and compact force sensors in the feet provide accurate measurements about the contact situations. The variable payload, such as a modular pan-tilt head with a variety of inspection sensors, can be exchanged depending on the application. Thanks to novel, compliant joint modules with integrated electronics, ANYmal is precisely torque controllable and very robust against impulsive loads during running or jumping. In a series of experiments we demonstrate that ANYmal can execute various climbing maneuvers, walking gaits, as well as a dynamic trot and jump. As special feature, the joints can be fully rotated to switch between X- and O-type kinematic configurations. Detailed measurements unveil a low energy consumption of 280 W during locomotion, which results in an autonomy of more than 2 h.  相似文献   

10.
Fault-tolerant gaits in legged locomotion are defined as gaits with which legged robots can continue their walking after a failure event has occurred to a leg of the robot. For planning an efficient fault-tolerant gait, kinematic constraints and remaining mobility of the failed leg should be closely examined with each other. This paper addresses the problem of kinematic constraints on fault-tolerant gaits. The considered failure is a locked joint failure which prevents a joint of a leg from moving and makes it locked in a known place. It is shown that for the existence of the conventional fault-tolerant gait for forward walking on even terrain, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the conventional fault-tolerant gait is adopted by including the adjustment of the foot trajectory of the failed leg. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid dead-lock resulting from the kinematic constraint. To demonstrate its effectiveness, the proposed method is applied to the fault-tolerant gait generation for a quadruped robot walking with the wave-crab gait before a locked joint failure.  相似文献   

11.
刘丽梅  田彦涛 《控制与决策》2013,28(8):1152-1156
为了将双足机器人的混沌步态控制收敛到稳定的周期步态,提出一种控制策略。首先用庞卡莱截面法研究斜坡倾角变化对步态的影响,结果表明,坡度增大会导致倍周期步态到混沌步态的产生;然后以人类步行的生物力学为仿生依据,根据延迟反馈控制的基本思路,设计了自适应常值驱动与传感反馈相结合的仿生行走控制策略,并依据当前步和前两步初始状态对控制器参数进行逐步调节,最终将混沌步态控制收敛到周期步态。仿真结果表明了所提出算法的有效性。  相似文献   

12.
Biped walking remains a difficult problem, and robot models can greatly facilitate our understanding of the underlying biomechanical principles as well as their neuronal control. The goal of this study is to specifically demonstrate that stable biped walking can be achieved by combining the physical properties of the walking robot with a small, reflex-based neuronal network governed mainly by local sensor signals. Building on earlier work (Taga, 1995; Cruse, Kindermann, Schumm, Dean, & Schmitz, 1998), this study shows that human-like gaits emerge without specific position or trajectory control and that the walker is able to compensate small disturbances through its own dynamical properties. The reflexive controller used here has the following characteristics, which are different from earlier approaches: (1) Control is mainly local. Hence, it uses only two signals (anterior extreme angle and ground contact), which operate at the interjoint level. All other signals operate only at single joints. (2) Neither position control nor trajectory tracking control is used. Instead, the approximate nature of the local reflexes on each joint allows the robot mechanics itself (e.g., its passive dynamics) to contribute substantially to the overall gait trajectory computation. (3) The motor control scheme used in the local reflexes of our robot is more straightforward and has more biological plausibility than that of other robots, because the outputs of the motor neurons in our reflexive controller are directly driving the motors of the joints rather than working as references for position or velocity control. As a consequence, the neural controller and the robot mechanics are closely coupled as a neuromechanical system, and this study emphasizes that dynamically stable biped walking gaits emerge from the coupling between neural computation and physical computation. This is demonstrated by different walking experiments using a real robot as well as by a Poincaré map analysis applied on a model of the robot in order to assess its stability.  相似文献   

13.
A proportional-derivative (PD) control with on-line gravity compensation is proposed for regulation tasks of robot manipulators with elastic joints. The work extends a previous PD control with constant gravity compensation at the desired configuration. The control law requires measuring only position and velocity on the motor side of the elastic joints, while the on-line gravity compensation torque uses a biased measure of the motor position. It is proved via a Lyapunov argument that the control law globally asymptotically stabilizes the desired robot configuration. A simulation study on a two-joint arm reveals the better performance that can be obtained with the new scheme as compared to the case of constant gravity compensation. Moreover, the proposed controller is experimentally tested on an eight-joint cable-driven robot manipulator, in combination with a point-to-point interpolating trajectory, showing the practical advantages of the on-line compensation.  相似文献   

14.
This article discusses the problem of controlling robot manipulators with passive joints, when the number of passive joints is larger than the number of active joints. Assuming that brakes and position sensors are available at each passive joint, we investigate the following issues: (1) what is a sufficient condition for controllability of the passive joints via dynamic coupling with the active joints and how can we quantify the controllability at a given configuration; (2) what is the optimal control and locking sequence of the passive joints; and (3) how can we control both passive and active joints to an equilibrium point in joint space. We propose an optimal control method and demonstrate its validity with both simulation and experimental results. The work presented here is significant because it provides a better understanding and a guideline for utilizing manipulators with passive joints for energy efficiency and fault-tolerant design in applications such as space robotics, hyperredundant robots, and sport mechanics. © 1998 John Wiley & Sons, Inc. 15: 115–129, 1998  相似文献   

15.
RHex-style hexapod robot is a type of legged robot which can perform multiple moving gaits according to different applications, due to its simple structure and strong mobility. However, traversing high obstacles has always been a big challenge for legged robots. In this paper, gait optimization of a hexapod robot is proposed for climbing steps at different heights, which even enables the robot to climb the step 3.9 times of the leg length. First, a previous step-climbing gait is optimized by adjusting body inclination when placing front legs on top of the step, which enables RHex with different sizes to perform the rising stage of the gait. Second, to improve the climbing heights, a novel quasi-static climbing gait is proposed by using the reversed claw-shape legs to reach the higher step. The nondeformable legs are used to raise the center of mass (COM) of the body by lifting the front and rear legs alternately so that the front legs can reach the top of the step, then the front and middle legs are lifted alternately to maneuver COM up onto the step. The simulations and dynamic analysis of climbing steps are utilized to verify the feasibility of the improved gait. Finally, the step-climbing experiments at different heights are performed with the optimized gaits to compare with the existing gaits. The results of simulations and experiments show the superiority of the proposed gaits due to climbing higher steps.  相似文献   

16.
This paper extends the authors' previous results on fault tolerant locomotion of the hexapod robot on even terrain by relaxing nonoverlap of redefined reachable cells of legs and considering crab walking. It is shown that in fault tolerant locomotion two adjacent legs of the hexapod robot can have overlapping redefined reachable cells with each other and consequently the stride length of the gaits is increased. Also, the optimal fault tolerant periodic gaits for hexapod robots to have the maximum stride length in one cycle in crab walking on even terrain are derived with distinct reachable cells. The derived sequence for crab walking has different orders of leg swing according to the relative values of the crab angle and some design parameters of the robot  相似文献   

17.
钱钧  杨汝清  翁新华  刘红星 《机器人》2006,28(6):571-575
介绍了一种应用于城区环境的消防侦察机器人.它采用具有关节链轮的差动轮式结构,适于爬楼梯和斜坡.采用实时泄漏补偿方式维持车体内具有恒定正压,确保机器人的防爆安全性能.在失去无线控制信号时,机器人根据侦察过程中记录的传感器数据,按原路径返回,并自动回撤到安全区域.由于使用单一的编码器获得的位置信息具有累积误差,本文采用新颖的编码器与超声波传感器数据集成的方法,并使用迭代最近点算法进行数据匹配,调整机器人的位置和方向角,获得了较高的自动回撤精度.  相似文献   

18.
The authors of this study are a part of a joint project, involving four French laboratories, whose goal is the design and construction of a mechanical biped robot with anthropomorphic characteristics. In the first section of this paper, we will examine mechanical architectures of some representatives of state-of-the art biped robots by focusing on their kinematic arrangement. It is widely known that the existence of natural gaits is closely linked to the intrinsic dynamic characteristics of the mechanical structure of the biped robot. In order to further develop this idea, two studies will be presented in the second section: the first is relative to the lateral instability of the system while the second deals with the existence of passive pendular gaits during the swing phase of walking in the sagittal plane. In the last section, in correlation with the observations made, we will gain insight into main characteristics of the mechanical architecture that we have designed for the BIP project: 15 active degrees of freedom (DOF), joints actuated by special transmission system, anthropometric mass distribution  相似文献   

19.
Describes the field testing of the Hyperion robotics project which uses the concept of sun-synchronous navigation. Hyperion is made of aluminum tubing and has four, wheels on two axles. Each wheel has a motor, and the front axle has a passive joint that can roll and yaw relative to the back end. Hyperion steers by driving the wheels at different speeds, and the passive front-axle joint turns the robot in arcs. The 1.5 meter-high front axle gives the robot's digital cameras and laser scanner a view of surrounding terrain; the latter helps it detect close-range obstacles. A third panoramic camera offers remote observers a view of its surroundings. All other robot components are housed in the body, which is mounted between the axles. Hyperion uses a pair of global positioning system receivers and an odometric system to determine its position and orientation and wheel-based odometric:sensing to estimate motion. Odometry also enables positioning and orientation on other planets, where the robot could use things such as a star, sun, or terrain landmark in place of GPS. Multiple onboard sensors act as Hyperion's health-monitoring and fault-detection system, checking everything from computer processes and laser scanners to a sensor suite that monitors the rate at which the system receives GPS information. The planner combines a priori knowledge of terrain, planetary rotation, sun location, solar flux predictions, and predictions of rover capability.  相似文献   

20.
This paper presents a recurrent neural network based novelty filter where a Scitos G5 mobile robot explored the environment and built dynamic models of observed sensory–motor values, then the acquired models of normality are used to predict the expected future values of sensory–motor inputs during patrol. Novelties could be detected whenever the prediction error between models-predicted values and actual observed values exceeded a local novelty threshold. The network is trained on-line; it grows by inserting new nodes when abnormal observation is perceived from the environment; and also shrinks when the learned information is not necessary anymore. In addition, the network is also capable of learning region-specific novelty thresholds on-line continuously.To evaluate the proposed algorithm, real-world robotic experiments were conducted by fusing sensory perceptions (vision and laser sensors) and the robot motor control outputs (translational and rotational velocities). Experimental results showed that all of the novelty cases were highlighted by the proposed algorithms and it produced reliable local novelty thresholds while the robot patrols in the noisy environment. The statistical analysis showed that there was a strong correlation between the novelty filter responses and the actual novelty status. Furthermore, the filter was also compared with another novelty filter and the results showed that the proposed system performed better novelty detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号