共查询到20条相似文献,搜索用时 15 毫秒
1.
作为国际热核聚变实验堆(ITER)的重要部件之一,屏蔽包层承受高强度聚变中子辐照,需要定期更换和维修。当活化的屏蔽包层从ITER托卡马克装置移到热室时,可能会给工作人员造成严重的辐射照射,是ITER大厅和热室屏蔽设计的重要辐射源。文中基于ITER最新中子学分析基准模型和"二步法"停堆剂量计算方法,使用超级蒙特卡罗核计算仿真软件系统SuperMC针对15号屏蔽包层建立精细的中子学模型,并计算分析包层的活化情况及最严重情况下的周围辐射剂量率,并初步应用于ITER赤道窗口室的屏蔽分析。计算结果显示,单个包层周围最大剂量率为350 Sv/hr,当传送小车停留在赤道窗口室内时,窗口室屏蔽门外剂量率高于10 mSv/hr,不足以满足设计要求。 相似文献
2.
《Fusion Engineering and Design》2014,89(5):507-511
The ITER plasma control system (PCS) will play a central role in enabling the experimental program to attempt to sustain DT plasmas with Q = 10 for several hundred seconds and also support research toward the development of steady-state operation in ITER. The PCS is now in the final phase of its conceptual design. The PCS relies on about 45 diagnostic systems to assess real-time plasma conditions and about 20 actuator systems for overall control of ITER plasmas. It will integrate algorithms required for active control of a wide range of plasma parameters with sophisticated event forecasting and handling functions, which will enable appropriate transitions to be implemented, in real-time, in response to plasma evolution or actuator constraints.In specifying the PCS conceptual design, it is essential to define requirements related to all phases of plasma operation, ranging from early (non-active) H/He plasmas through high fusion gain inductive plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture will be capable of satisfying the demands of the ITER research plan. The scope of the control functionality required of the PCS includes plasma equilibrium and density control commonly utilized in existing experiments, control of the plasma heat exhaust, control of a range of MHD instabilities (including mitigation of disruptions), and aspects such as control of the non-inductive current and the current profile required to maintain stable plasmas in steady-state scenarios. Control areas are often strongly coupled and the integrated control of the plasma to reach and sustain high plasma performance must apply multiple control functions simultaneously with a limited number of actuators. A sophisticated shared actuator management system is being designed to prioritize the goals that need to be controlled or weigh the algorithms and actuators in real-time according to dynamic control needs. The underlying architecture will be event-based so that many possible plasma or plant system events or faults could trigger automatic changes in the control algorithms or operational scenario, depending on real-time operating limits and conditions. 相似文献
3.
A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m2 plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results. 相似文献
4.
在国际热核聚变实验堆(ITER)中,窗口生物屏蔽插件需为电子设备和工作人员提供必要的辐射屏蔽防护。基于中子学分析的生物屏蔽插件设计是ITER设计的重要内容。本文基于超级蒙卡核模拟软件SuperMC,在ITER大厅三维中子学模型中整合了ITER设计整合部门(DIN)最新设计的下窗口生物屏蔽插件模型,对四种下窗口生物屏蔽插件进行了屏蔽分析。分析结果显示,低温恒温器低温泵生物屏蔽插件中子屏蔽性能最好,室内监视系统生物屏蔽插件屏蔽性能最差;室内检视系统生物屏蔽插件停堆剂量率最小,环形低温泵生物屏蔽插件停堆剂量率最大。在SA2辐照方案下,停堆12天后,环形低温泵生物屏蔽插件处停堆剂量率超过规定限值20倍。分析结果表明,ITER下窗口生物屏蔽插件设计有待优化。 相似文献
5.
Hermann Grunder Lee Berry William Ellis Raymond Fonck Jeffrey Freidberg Katherine B. Gebbie Richard J. Hawryluk Bruce Montgomery Gerald Navratil Hutch Neilson John Perkins Stephen L. Rosen Kurt Schoenberg Harold Weitzner 《Journal of Fusion Energy》2000,19(1):35-44
The Department of Energy (DOE) Office of Energy Research chartered through the Fusion Energy Sciences Advisory Committee (FESAC) a panel to address the topic of U.S. participation in an ITER construction phase, assuming the ITER Parties decide to proceed with construction. Given that there is expected to be a transition period of 3 to 5 years between the conclusion of the Engineering Design Activities (EDA) and the possible construction start, the DOE Office of Energy Research expanded the charge to include the U.S. role in an interim period between the EDA and construction.This panel has heard presentations and received input from a wide cross-section of parties with an interest in the fusion program. The panel concluded it could best fulfill its responsibility under this charge by considering the fusion energy science and technology portion of the U.S. program in its entirely. Accordingly, the panel is making some recommendations for optimum use of the transition period considering the goals of the fusion program and budget pressures. 相似文献
6.
This paper is focused on the design, simulation and optimisation of the ITER divertor magnetic tangential coils. The most critical issue for the divertor coils is to minimise RITES [G. Vayakis, et al., Radiation-induced thermoelectric sensitivity (RITES) in ITER prototype magnetic sensors, Rev. Sci. Instrum. 75 (10) (2004) 4324-4327] and TIEMF [R. Vila, E.R. Hodson, Thermally induced EMF in unirradiated MI cables, J. Nucl. Mater. 367-370 (Part 2) (2007) 1044-1047] by combining a proper choice of conductor with low temperature variation in the coil. Instead of mineral insulated cable (MIC), which was foreseen as the preferred winding, a winding made of ceramic-coated steel wire was recently proposed [G. Chitarin, L. Grando, S. Peruzzo, C. Tacconet, Design developments for the ITER in-vessel equilibrium Halo current sensors, 24th SOFT Conference, Warsaw, Poland, September 2006, Fusion Eng. Design, in press]. It is thought that, for this wire, maintaining a temperature variation in the wiring below 10 K will be sufficient to allow long-pulse operation. Variations of the divertor coil design have been simulated with the help of ANSYS. The aim was to keep the temperature variation in the winding pack within this limit. The optimisation of the coil based only on a cooling by conduction was not sufficient to meet the 10 K target. Therefore, an actively water-cooled coil was designed which finally met these requirements. 相似文献
7.
8.
Dario Carloni Giovanni Dell’Orco Gopalapillai Babulal Fabio Somboli Luigi Serio Sandro Paci 《Fusion Engineering and Design》2013,88(9-10):1709-1713
One of the main challenges of the ITER fusion reactor is to effectively remove large amount of heat deposited to the surface of the plasma facing components. The tokamak cooling water system (TCWS) will accomplish the objective of removing about 1 GW of peak heat load from in-vessel components while maintaining pressures and temperatures of the coolant within acceptable and safe limits during different operational scenarios. A study of feasibility has been launched for the IBED PHTS (Integrated Blanket, Edge localized mode coils (ELMs) and Divertor Primary Heat Transfer System; it consists of five independent cooling trains (four operational and one in stand-by), one steam pressurizer, supply and return headers, ring manifolds and connections to the all in-vessel components (i.e. First Wall Blanket, Divertor, ELM, Diagnostics and other Ports clients).The dynamic behaviour of the IBED PHTS has been investigated by means of RELAP5® code to simulate the response of the system during plasma pulse and baking operations. Due to the plasma heat deposition on the surfaces of the in-vessel components and subsequent increase in hot leg temperature, a large amount of water volume is transferred from the hot legs of the circuit to the surge-line of the pressurizer during each burn cycle. This causes rapid increase of pressure and temperature of the system and the following actions are proposed to counteract these variations: spray injection in the upper dome of the pressurizer from the Chemical and Volume Control System (CVCS) to reduce the pressure and active control of flow rates through heat exchangers and their bypass loops to regulate the heat transfer from the primary system to the environment via secondary and tertiary loops.This paper focuses on the prediction of the thermal hydraulic behaviour of the IBED PHTS during plasma pulses and baking scenarios, describing the various activity of the analysis, the geometrical assessment of the circuit and the modelling with RELAP5® code. The results have been compared with design and operational requirement. Possible strategies to enhance the system performances have been formulated. 相似文献
9.
German Perez Teresa Estrada George Vayakis Christopher Walker 《Fusion Engineering and Design》2009,84(7-11):1488-1494
The antennas of the ITER plasma-position reflectometer are the components most exposed to the plasma. High thermal loads can cause high temperatures and excessive stress, so the first constrains on the antenna design arise from thermal simulations results. Therefore, the first step of the analysis is to develop a finite element thermal model with ANSYS. Once the temperatures are kept at acceptable levels, structural analysis is performed to know the thermal stress. Simulations performed using different materials and support structure geometries are discussed. Further, it has been checked that the components can withstand the electromagnetic loads expected during disruptions and vertical displacement events. The stress due to these electromagnetic loads is calculated analytically as well as with ANSYS simulations. The proposed antenna arrangement is properly designed against thermal and mechanical loads. 相似文献
10.
Anna Marin Byoung Yoon Kim Claudio Bertolini Flavio Lucca Victor Komarov Mario Merola Luciano Giancarli Stefan Gicquel 《Fusion Engineering and Design》2013,88(11):2791-2795
One of the main engineering performance goals of ITER is to test and validate design concepts of tritium breeding blankets. To accomplish these goals, three ITER equatorial ports are dedicated to the test of Test Blanket Modules (TBMs) that are mock-ups of tritium breeding blankets. These TBMs, associated with appropriate shield blocks, will also provide the same thermal and nuclear shielding as the main blanket. The main function of TBM Port Plug (PP) is to accommodate TBMs and provide a standardized interface with the vacuum vessel (VV)/port structure.The feasibility of the design concept of the Frame including two Dummy TBMs has been investigated by proposing design improvements of the reference design through an extensive set of thermal, electromagnetic (EM) and stress analyses. As well, the related static strength was evaluated in accordance with the structural design criteria for ITER in-vessel components (SDC-IC). This paper outlines the engineering aspects of the ITER TBM Frame and Dummy TBM and focuses on the feasibility of the present design by structural assessment. 相似文献
11.
Ph. Moreau A. Le-Luyer P. Hertout F. Saint-Laurent W. Zwingmann J.M. Moret Y. Martin 《Fusion Engineering and Design》2009,84(7-11):1344-1350
Accurate magnetic diagnostics are essential to perform reliable operation of any tokamak. The ITER magnetic diagnostics include a wide variety of sensors located on the inner and outer surfaces of the vacuum vessel, in the divertor cassettes and in the casing of the toroidal field coils. As the measurement accuracy of the inner set of magnetic sensors might be compromised by various radiation effects and high heat loads, the complementary ex-vessel set is essential to provide backup information. This paper is an overview of the ex-vessel magnetic diagnostic which consists mainly of pick-up coils, steady state sensors, Rogowski coils in the toroidal field coil casing and fibre optic current sensors. The work presented aims at designing these sensors to meet the performance requirements in spite of the constraints due to the tokamak environment. The manufacturing constraints and the positioning requirements for all the ex-vessel magnetic sensors are described. The use and expected accuracy of the entire ex-vessel magnetic diagnostic is assessed in terms of magnetic equilibrium reconstruction and plasma current measurement precision. 相似文献
12.
13.
D. Strauss G. Aiello R. Chavan S. Cirant M. deBaar D. Farina G. Gantenbein T.P. Goodman M.A. Henderson W. Kasparek K. Kleefeldt J.-D. Landis A. Meier A. Moro P. Platania B. Plaum E. Poli G. Ramponi H. Zohm 《Fusion Engineering and Design》2013,88(11):2761-2766
The design of the ITER electron cyclotron launchers recently reached the preliminary design level - the last major milestone before design finalization. The ITER ECH system contains 24 installed gyrotrons providing a maximum ECH injected power of 20 MW through transmission lines towards the tokamak. There are two EC launcher types both using a front steering mirror; one equatorial launcher (EL) for plasma heating and four upper launchers (UL) for plasma mode stabilization (neoclassical tearing modes and the sawtooth instability). A wide steering angle range of the ULs allows focusing of the beam on magnetic islands which are expected on the rational magnetic flux surfaces q = 1 (sawtooth instability), q = 3/2 and q = 2 (NTMs).In this paper the preliminary design of the ITER ECH UL is presented, including the optical system and the structural components. Highlights of the design include the torus CVD-diamond windows, the frictionless, front steering mechanism and the plasma facing blanket shield module (BSM). Numerical simulations as well as prototype tests are used to verify the design 相似文献
14.
P. Libeyre N. Mitchell D. Bessette Y. Gribov C. Jong C. Lyraud 《Fusion Engineering and Design》2009,84(7-11):1188-1191
The central solenoid (CS) of the ITER tokamak contributes to the inductive flux to drive the plasma, to the shaping of the field lines in the divertor region and to vertical stability control. It is made of 6 independent coils, using a Nb3Sn cable-in-conduit superconducting conductor, held together by a vertical precompression structure. This design enables ITER to access a wide operating window of plasma parameters, up to 17 MA and covering inductive and non-inductive operation. Each coil is based on a stack of multiple pancake winding units to minimise joints. A glass–polyimide electrical insulation, impregnated with epoxy resin, is giving a high voltage operating capability, tested up to 29 kV. The CS performance is fatigue driven mainly by the stress levels in the conductor jacket and in the precompression structure needed to keep the modules in contact during the repulsive forces which can arise in operation. A rigid connection to the TF coils provided at one end and a centering support at the other end allow to resist net vertical forces as well as unbalanced radial forces while avoiding torsion transmission from the TF Coils to the CS assembly. 相似文献
15.
This study has been a first attempt at identifying potential worker overexposure situations during machine maintenance operations. The results indicate potential areas, or situations, where worker overexposure may be possible [A. Natalizio, T. Pinna, Safety analysis of failures and consequences during maintenance, ENEA Report, FUS-TN-SA-SE-R-170, June 2007, Frascati, Italy].The key findings obtained are as follows. Firstly, we have found no machine maintenance operations where the risk of worker overexposure is considered significantly large that immediate design attention is needed.Secondly, the most significant risk of worker overexposure is due to airborne releases of radioactivity from cooling water pipes and tubes that may not have been fully drained and dried, when they are cut, or inadvertently opened, by workers (frequency of pipe-cutting activities could be significantly high).Thirdly, the risk of overexposure from human error could also be significant. This varies from mistaking the machine sector, to mistaking the component to be maintained. This is analogous to working on a live electrical circuit, when it is believed to be dead (disconnected from the power source) because the worker has mistakenly selected the wrong circuit—a look-alike one. Similarly, consider the situation of a worker mistakenly preparing to work on a cooling water circuit that is still at pressure and temperature, instead of the one that has been drained and dried. The more look-alike situations there are in the facility, the greater the probability of committing this type of error.Fourthly, when consideration is given to human error, we believe that the aggregation of different diagnostics in the same port enhances the probability of human error. At the moment, these risks cannot be quantified. The task of quantifying those risks in the future should be considered.Finally, the transport of activated in-vessel components, including components of plasma-heating and current-drive systems, in non-shielded casks, could carry with it a significant risk of worker overexposure. In the context of ALARA, this approach requires a specific study to justify its use.Concluding, it is important to note that by having identified the possibility of an overexposure situation does not mean that it is probable. The calculation of probability awaits further studies of this nature, when the design reaches a more detailed level. 相似文献
16.
Dong Won Lee Bong Geun Hong Yonghee Kim Wang Ki In Kyung Ho Yoon 《Fusion Engineering and Design》2007,82(4):381-388
Through a consideration of the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He cooled molten lithium (HCML) blanket with ferritic steel (FS) as a structural material in the International Thermonuclear Experimental Reactor (ITER) program. The preliminary design and its performance of KO HCML test blanket module (TBM) are introduced in this paper. It uses He as a coolant at an inlet temperature of 300 °C and an outlet temperature up to 400 °C and Li is used as a tritium breeder by considering its potential advantages. Two layers of graphite are inserted as a reflector in the breeder zone to increase the tritium breeding ratio (TBR) and the shielding performances. A 3-D Monte Carlo analysis is performed with the MCCARD code for the neutronics and the total TBM power is designed to be 0.739 MW at a normal heat flux from the plasma side. From the analysis results with CFX-10 for the thermal-hydraulics, the He cooling path is determined and it shows that the maximum temperature of the first wall does not exceed 550 °C at the structural materials and the coolant velocities are 45 and 11.5 m/s in the first wall and breeding zone, respectively. The obtained temperature data is used in the thermal-mechanical analysis with ANSYS-10. The maximum von Mises equivalent stress of the first wall is 123 MPa and the maximum deformation of it is 3.73 mm, which is lower than the maximum allowable stress. 相似文献
17.
Ferromagnetic material is used to reduce the toroidal field ripple in JFT-2M [H. Kawashima, et al., Demonstration of ripple reduction by ferritic steel board insertion in JFT-2M, Nucl. Fusion, 41 (2001) 257-263] and JT-60U [H. Takenaga, the JT-60 Team, Overview of JT-60U results for development of steady-state advanced Tokamak scenario, Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, China, 2006]. In ITER, since the ferromagnetic material is inserted in the space between the double walls of ITER Vacuum Vessel (VV), it is called “ferromagnetic inserts”. Suitable material is selected to satisfy the design requirements of ITER. The proper location and amount of the ferromagnetic inserts are optimized with the goal of reduction of the toroidal field ripple. The ferromagnetic inserts are designed to minimize electromagnetic forces acting on them. The electromagnetic forces have been calculated with the latest disruption scenarios. Magnetization forces due to magnetic fields have also been calculated. Structural integrity has been validated by a structural analysis. 相似文献
18.
R. Mitteau B. Calcagno P. Chappuis R. Eaton S. Gicquel J. Chen A. Labusov A. Martin M. Merola R. Raffray M. Ulrickson F. Zacchia 《Fusion Engineering and Design》2013,88(6-8):568-570
The ITER blanket is in the final stage of design completion. The issues raised during the 2007 ITER design review about the first wall (FW) heat loads and remote handling strategy have been addressed, while integrating the recently confirmed in-vessel coils. This paper focuses on the FW design, which is nearing completion. Key design justifications are presented, followed by a summary of the current status of the manufacturing plan and R&D activities. 相似文献
19.
R. Pampin A. Davis J. Izquierdo D. Leichtle M.J. Loughlin J. Sanz A. Turner R. Villari P.P.H. Wilson 《Fusion Engineering and Design》2013,88(6-8):454-460
Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case of fusion technology in current experiments, ITER, next-step devices and power plant studies. Calculations are intricate and computer-intensive, typically requiring detailed geometry models, sophisticated acceleration algorithms, high-performance parallel computations, and coupling of large and complex transport and activation codes and databases. This paper reports progress on some key areas in the development of tools and methods to meet the specific needs of fusion nuclear analyses. In particular, advances in the production and modernisation of reference models, in the preparation and quality assurance of acceleration algorithms and coupling schemes, and in the evaluation and adaptation of alternative transport codes are presented. Emphasis is given to ITER-relevant activities, which are the main driver of advances in the field. Discussion is made of the importance of efforts in these and other areas, considering some of the more pressing needs and requirements. In some cases, they call for a more efficient and coordinated use of the scarce resources available. 相似文献
20.
为评估机房辐射防护水平,依据机器的运行上限参数,运用相关文献报道的计算方法,对X射线初级和次级屏蔽层以及加速器防护门的屏蔽能力进行估算和分析。结果表明:加速器机房四周墙体(除迷路内墙外)和天棚的设计厚度均大于理论计算厚度,表明机房的相应屏蔽层厚度设计可以满足15 MeV X射线加速器的防护标准及选定的剂量管理目标值;此外,机房防护门需增加8.3 mm铅和6.9 cm含硼聚乙烯才能分别满足对X射线和中子的屏蔽要求。 相似文献