共查询到3条相似文献,搜索用时 0 毫秒
1.
Xue Hu Lixin Huang Wanggen Wang Zhenguo Yang Wei Sha Wei Wang Wei Yan Yiyin Shan 《Fusion Engineering and Design》2013,88(11):3050-3059
The low cycle fatigue (LCF) properties and the fracture behavior of China Low Activation Martensitic (CLAM) steel have been studied over a range of total strain amplitudes from 0.2 to 2.0%. The specimens were cycled using tension-compression loading under total strain amplitude control. The CLAM steel displayed initial hardening followed by continuous softening to failure at room temperature in air. The relationship between strain and fatigue life was predicted using the parameters obtained from fatigue test. The factors effecting on low cycle fatigue of CLAM steel consisted of initial state of matrix dislocation arrangement, magnitude of cyclic stress, magnitude of total strain amplitude and microstructure. The potential mechanisms controlling the stress response, cyclic strain resistance and low cycle fatigue life have been evaluated. 相似文献
2.
《Fusion Engineering and Design》2014,89(4):324-328
In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He+ beam and sequential He+ and H+ beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C. 相似文献
3.
Structural materials of fusion reactors are subjected to complex creep-fatigue loading and high irradiation doses. Correct modeling of their deterioration is a precondition of a sufficiently reliable lifetime prediction procedure. In the continuum mechanics approach selected for lifetime prediction of RAFM steels under creep-fatigue conditions, the inelastic strain rate modified (ISRM) damage model is coupled with a modified viscoplastic deformation model taking into account the complex non-saturating cyclic softening of RAFM steels. The resulting coupled model is a powerful prediction tool, which can be applied to arbitrary creep-fatigue loading provided that the material, temperature and possibly irradiation dose-dependent parameters of the model have been determined. Therefore, a fitting procedure has been developed for the parameters identification on the base of deformation and lifetime data from strain-controlled low cycle fatigue (LCF) tests without and with hold time as well as creep tests. The coupled deformation-damage model has been applied to F82H mod and EUROFER 97 in the reference (unirradiated) state under isothermal cyclic loading at 450, 550 and 650 °C. The comparisons between model and experiment show that the observed lifetimes in the LCF tests could be fairly well calculated even for the tests with hold time, which were not considered for the identification of the damage model parameters. 相似文献