首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The JT-60SA experiment is one of the three projects to be undertaken in Japan as part of the Broader Approach Agreement, conducted jointly by Europe and Japan, and complementing the construction of ITER in Europe. It is a fully superconducting tokamak capable of confining break-even equivalent deuterium plasmas with equilibria covering high plasma shaping with a low aspect ratio at a maximum plasma current of Ip = 5.5 MA. In late 2007 the BA Parties, prompted by cost concerns, asked the JT-60SA Team to carry out a re-baselining effort with the purpose to fit in the original budget while aiming to retain the machine mission, performance, and experimental flexibility. Subsequently the Integrated Project Team has undertaken a machine re-optimization followed by engineering design activities aimed to reduce costs while maintaining the machine radius and plasma current. This effort led the Parties to the approval of the new design in late 2008 and hence final design and procurement activities have commenced. The paper will describe the process leading to the re-baselining, the resulting final design and technical solutions and the present status of procurement activities.  相似文献   

2.
This paper describes the approved detailed design of the four Switching Network Units (SNUs) of the superconducting Central Solenoid of JT-60SA, the satellite tokamak that will be built in Naka, Japan, in the framework of the “Broader Approach” cooperation agreement between Europe and Japan.The SNUs can interrupt a current of 20 kA DC in less than 1 ms in order to produce a voltage of 5 kV. Such performance is obtained by inserting an electronic static circuit breaker in parallel to an electromechanical contactor and by matching and coordinating their operations. Any undesired transient overvoltage is limited by an advanced snubber circuit optimized for this application. The SNU resistance values can be adapted to the specific operation scenario. In particular, after successful plasma breakdown, the SNU resistance can be reduced by a making switch.The design choices of the main SNU elements are justified by showing and discussing the performed calculations and simulations. In most cases, the developed design is expected to exceed the performances required by the JT-60SA project.  相似文献   

3.
The JT-60SA vacuum vessel (VV) has a D-shaped poloidal cross section and a toroidal configuration with 10° segmented facets. A double wall structure is adopted to ensure high rigidity at operational load and high toroidal one-turn resistance. The material is 316L stainless steel with low cobalt content (<0.05%). The design temperatures of the VV at plasma operation and baking are 50 °C and 200 °C, respectively. In the double wall, boric-acid water is circulated at plasma operation to reduce the nuclear heating of the superconducting magnets. For baking, nitrogen gas is circulated in the double wall after draining of the boric-acid water.The manufacturing of the VV started in November 2009 after a fundamental welding R&D and a trial manufacturing of 20° upper half mock-up. The manufacturing of the first VV 40° sector was completed in May 2011. A basic concept and required jigs of the VV assembly were studied.This paper describes the design and manufacturing of the vacuum vessel. A plan of VV assembly in torus hall is also presented.  相似文献   

4.
The modifying of the JT-60U magnet system to the superconducting coils is progressing as a satellite facility for ITER by both parties of Japanese government and European commission in the Broader Approach agreement. The magnet system requires current supplies of 25.7 kA for 18 TF coils and of 20 kA for 4 CS modules and 6 EF coils. The magnet system generates an average heat load of 3.2 kW at 4 K to the cryogenic system. The feeder components connected to the power supply provide current supply. The cooling pipes connected to the cryogenic system provide coolant supply. The instrumentation of the JT-60SA magnet system is used for its operation.  相似文献   

5.
JT-60 is planned to be upgraded to JT-60SA tokamak machine with fully superconducting coils, which is a project of the JA-EU satellite tokamak program under both Broader Approach program and Japanese domestic program. The JT-60SA vacuum vessel (VV) has a D-shape poloidal cross section and a toroidal configuration with 10° facet segmented in toroidal direction. The material of the VV is 316L stainless steel with low cobalt content of <0.05 wt%. A double wall structure is adopted for the VV to ensure high rigidity and high toroidal one-turn resistance simultaneously.Fundamental welding R&D and a trial manufacturing of the 20° upper half of the VV have been performed to study the manufacturing procedure. After the confirmation of the quality of the mock-up, manufacturing of the actual VV started in November 2009.  相似文献   

6.
Neutral beam (NB) injectors for JT-60 Super Advanced (JT-60SA) have been designed and developed. Twelve positive-ion-based and one negative-ion-based NB injectors are allocated to inject 30 MW D0 beams in total for 100 s. Each of the positive-ion-based NB injector is designed to inject 1.7 MW for 100 s at 85 keV. A part of the power supplies and magnetic shield utilized on JT-60U are upgraded and reused on JT-60SA. To realize the negative-ion-based NB injector for JT-60SA where the injection of 500 keV, 10 MW D0 beams for 100 s is required, R&Ds of the negative ion source have been carried out. High-energy negative ion beams of 490–500 keV have been successfully produced at a beam current of 1–2.8 A through 20% of the total ion extraction area, by improving voltage holding capability of the ion source. This is the first demonstration of a high-current negative ion acceleration of >1 A to 500 keV. The design of the power supplies and the beamline is also in progress. The procurement of the acceleration power supply starts in 2010.  相似文献   

7.
JT-60SA is a superconducting tokamak machine to be assembled in Naka site, Japan, designed to contribute to the early realization of fusion energy by supporting the exploitation of ITER and research toward DEMO.In the frame of the Broader Approach Agreement a contract between ENEA and Walter Tosto (Chieti, Italy) started on July 2012 for the construction of 18 TF coil casings for JT-60SA. Two different sets of 9 casings each will be progressively delivered, from 2013 to the end of 2015, to ASG Superconductors (Genoa, Italy) and to Alstom (Belfort, France), where the integration of the winding pack into the casing will be carried out.Each TF coil casing (height 7.5 m and width 4.5 m) consists of four main components: one “Straight Leg Outboard” and one “Curved Leg Outboard” both with their own covers, “Straight Leg Inboard” and “Curved Leg Inboard”. The casing components are segmented in forgings and plates made of FM316LNL. The straight leg outboard is composed of two wings welded to a central core and two elbows welded at the ends with a cooling channel installed inside. Elbows of straight leg outboard are segmented in two half-elbows machined from 1 rough forging and welded to the central core made by plate. Welding of wings to the central core is performed in EBW (electron beam welding) and the straight part is welded to the elbows by NGTIG (TIG narrow gap) process. The curved leg outboard is composed of two wings welded to a central core for a final shape of “D”. Other supports are welded by TIG or Electrode process.This paper describes the technical design solutions, the manufacturing methods defined and the particular processes adopted, such as welding (EB, TIG), non-destructive examinations (NDE), vibration stress relief (VSR) and laser tracker survey, most of which have been validated by the construction of two different sets of full scale mock-ups representing the straight and the curved legs.  相似文献   

8.
《Fusion Engineering and Design》2014,89(9-10):2018-2023
Disassembly of the JT-60U torus was started in 2009 after 18 years of D2 operations and was completed in October 2012 for assembling the JT-60SA torus at the same position. The JT-60U torus was featured by the complicated and welded structure against the strong electromagnetic force, and by the radioactivation due to deuterium–deuterium (D–D) reactions. Since this work is the first experience of disassembling a large radioactivated fusion device in Japan, careful preparations of disassembly activities, including treatment of the radioactivated materials and safety work, have been made. During the disassembly period over 3 years, careful measures against exposure were taken and stringent control of exposure dose were implemented, and as a result, accumulated collective effective dose of ∼41,000 person-day to workers was only ∼22 mSv in total and no internal exposure was observed. About 13,000 components cut into pieces with measuring the contact dose were removed from the torus hall and stored safely in storage facilities. The total weight of the disassembly components reached up to ∼5400 tonnes. Most of the disassembly components will be treated as non-radioactive ones after the clearance level inspection under the Japanese regulations in the future. The assembly of JT-60SA has started in January 2013 after this disassembly of JT-60U torus.  相似文献   

9.
Within the Broader Approach Agreement, Fusion for Energy will deliver to the Japanese Atomic Energy Association, amongst other components, the 18 Toroidal Field Coils (TFCs) for the superconducting Tokamak JT-60SA [1]. These coils will be individually tested at cryogenic temperatures and at the nominal current in a test cryostat. This cryostat is provided as an in-kind contribution by Belgium and is being developed jointly with CEA-Saclay/France.The vessel is large, oval shaped with an overall length of 11 m, a width of 7.2 m and a height of 6.5 m. To reduce the heat load to the coils the cryostat is covered by LN2 cooled thermal shields. In addition to the cryostat, three test frames for the coils, the valve box vessel and the insulation vacuum system are also provided by Belgium. The Belgian contribution is design, manufacturing, assembly and test of the vacuum chamber, thermal shield and test frames by the Belgian company Ateliers de la Meuse (ALM), with the support of Centre Spatial de Liège (CSL). The TF coil test facility is assembled and the coil tests are performed by CEA/Saclay.The Belgian contribution, namely the design, manufacturing, assembly and test of the vacuum vessel, the thermal shields, and the test frames as well as of the vacuum pumping system are described in the presentation.  相似文献   

10.
Present status of the JT-60SA (JT-60 Super Advanced) project, implemented jointly by Europe and Japan since 2007, is described. The design of the main tokamak components was completed in late 2008, and all the scientific missions are preserved to contribute to ITER and DEMO reactors. The construction of the JT-60SA has begun with procurement activities for the superconducting magnet systems, vacuum vessel, in-vessel components and other components under the relevant procurement arrangements between the implementing agencies of JAEA (Japan Atomic Energy Agency) in Japan and Fusion for Energy in Europe. Designs and developments of the auxiliary heating systems for JT-60SA have been progressing at JAEA so as to provide the total injection power of 41 MW for 100 s.  相似文献   

11.
The JT-60SA cryostat is a stainless steel vacuum vessel (14 m diameter, 16 m height) which encloses the Tokamak providing the vacuum environment (10?3 Pa) necessary to limit the transmission of thermal loads to the components at cryogenic temperature. It must withstand both external atmospheric pressure during normal operation and internal overpressure in case of an accident.The paper summarizes the structural analyses performed in order to validate the JT-60SA cryostat vessel body design. It comprises several analyses: a buckling analysis to demonstrate stability under the external pressure; an elastic and an elastic–plastic stress analysis according to ASME VIII rules, to evaluate resistance to plastic collapse including localized stress concentrations; and, finally, a detailed analysis with bolted fasteners in order to evaluate the behavior of the flanges, assuring the integrity of the vacuum sealing welds of the cryostat vessel body.  相似文献   

12.
ECH (Electron Cyclotron Heating) for ITER will deliver into the plasma 20 MW of RF power. The procurement of the RF sources will be shared equally between the three following partners: Europe, Japan and Russia. Moreover, Europe decided to develop a RF source capable of 2 MW CW of RF power, based on the design of a coaxial gyrotron with a depressed collector. In order to be able to develop and test these RF sources, a Test Facility (TF) has been built at the CRPP premises in Lausanne (CH).The present paper will first remind the main operation conditions considered to test safely a gyrotron. The power supplies parameters allowing to fulfill these conditions will be reviewed. The core of the paper content will describe the newly installed Main High Voltage Power Supply (MHVPS), to be connected to the gyrotron cathode and capable of ?60 kV/80 A-CW. The principle, the characteristics, the on-site test results will be described at the light of the requirements imposed by the gyrotron testing. Particular aspects of the installation and commissioning on-site will be highlighted in comparison with the ITER environment. The synchronized operation of the MHVPS and the BPS (Body Power Supply) on dummy load, piloted through the TF remote control, will be presented and commented.Since the TF supply structure has been built integrating the particular conditions and requirements expected for ITER, a conclusion will summarize the performances obtained at the light of these criteria.  相似文献   

13.
14.
ITER is targeting Q = 10 with 500 MW of fusion power. To meet this target, the plasma needs to be controlled and shaped for a period of hundreds of seconds, avoiding contact with internal components, and acting against instabilities that could result in the loss of control of the plasma and in its disruptive termination.Axisymmetric magnetic control is a well-understood area being the basic control for any tokamak device. ITER adds more stringent constraints to the control primarily due to machine protection and engineering limits. The limits on the actuators by means of the maximum current and voltage at the coils and the few hundred ms time response of the vacuum vessel requires optimization of the control strategies and the validation of the capabilities of the machine in controlling the designed scenarios.Scenarios have been optimized with realistic control strategies able to guarantee robust control against plasma behavior and engineering limits due to recent changes in the ITER design. Technological issues such as performance changes associated with the optimization of the final design of the central solenoid, control of fast transitions like H to L mode to avoid plasma-wall contact, and optimization of the plasma ramp-down have been modeled to demonstrate the successful operability of ITER and compatibility with the latest refinements in the magnetic system design.Validation and optimization of the scenarios refining the operational space available for ITER and associated control strategies will be proposed. The present capabilities of magnetic control will be assessed and the remaining critical aspects that still need to be refined will be presented. The paper will also demonstrate the capabilities of the diagnostic system for magnetic control as a basic element for control. In fact, the noisy environment (affecting primarily vertical stability), the non-axisymmetric elements in the machine structure (affecting the accuracy of the identification of the plasma boundary), and the strong component of eddy current at the start-up (resulting in a poor S/N ratio for plasma reconstruction for Ip < 2 MA requiring a robust plasma control) make the ITER magnetic diagnostic system a demanding part of the magnetic control and investment protection systems. Finally the paper will illustrate the identified roles of magnetic control in the PCS (plasma control system) as formally defined in the recent first step of the design and development of the system.  相似文献   

15.
This paper describes the manufacturing development and fabrication of reduced scale ITER First Wall (FW) mock-ups of the Normal Heat Flux (NHF) design, including a “semi-prototype” with a dimension of 305 mm × 660 mm, corresponding to about 1/6 of a full-scale panel. The activity was carried out in the framework of the pre-qualification of the European Domestic Agency (EU-DA or F4E) for the supply of the European share of the ITER First Wall. The hardware consists of three Upgraded (2 MW/m2) Normal Heat Flux (U-NHF) small-scale mock-ups, bearing 3 beryllium tiles each, and of one Semi-Prototype, representing six full-scale fingers and bearing a total of 84 beryllium tiles.The manufacturing process makes extensive use of Hot Isostatic Pressing, which was developed over more than a decade during ITER Engineering Design Activity phase. The main manufacturing steps for the semi-prototype are described, with special reference to the lessons learned and the implications impacting the future fabrication of the full-scale prototype and the series which consists of 218 panels plus spares.In addition, a “tile-size” mock-up was manufactured in order to assess the performance of larger tiles. The use of larger tiles would be highly beneficial since it would allow a significant reduction of the panel assembly time.  相似文献   

16.
A Korean high heat flux test facility for the semi-prototype (SP) qualification of an ITER first wall (FW) will be constructed to evaluate the fabrication technologies required for the ITER FW, and the acceptance of these developed technologies will be established for the ITER FW manufacturing procedure. Korea participated in this qualification program, and is responsible for suitable arrangements for the heat flux test of our fabricated SPs. Qualification testing can be started provided that adequate quality and control measures are implemented and validated by the ITER Organization (IO). The controlling measures required for all heat flux tests shall be concrete and demonstrate the satisfaction of the IO test programs. Each country shall provide a test plan covering the quality and controlling measures in the high heat flux test facility to be implemented throughout the test program. Korean high heat flux testing for these ITER plasma facing materials will be performed by using a 60 kV electron beam and a power supply system of 300 kW, where the allowable target dimension is 70 cm × 50 cm in a vacuum chamber. In addition, this facility needs a cooling system for a high-temperature target and decontamination system for beryllium filtration.  相似文献   

17.
Sensitivity studies performed as part of the ITER IO design review highlighted a very stiff dependence of the maximum Q attainable on the machine parameters. In particular, in the considered range, the achievable Q scales with Ip^4. As a consequence, the achievement of the ITER objective of Q = 10 requires the machine to be routinely operated at a nominal current Ip of 15 MA, and at full toroidal field BT of 5.3 T. This paper analyses the capabilities of the poloidal field (PF) system (including the central solenoid) of ITER against realistic full current plasma scenarios. An exploration of the ITER operational space for the 15 and 17 MA inductive scenario is carried out. An extensive analysis includes the evaluation of margins for the closed loop shape control action. The overall results of this analysis indicate that the control of a 15 MA plasma in ITER is likely to be adequate in the range of li 0.7–0.9 whereas, for a 17 MA plasma, control capabilities are strongly reduced. The ITER operational space, provided by the reference pre-2008 PF system, was rather limited if compared to the range of parameters normally observed in present experiment. Proposals for increasing the current and field limits on PF2, PF5 and PF6, adjustment on the number of turns in some of the PF coils, changes to the divertor dome geometry, to the conductor of PF6 to Nb3Sn, moving PF6 radially and/or vertically are described and evaluated in the paper. Some of them have been included in 2008 ITER revised configuration.  相似文献   

18.
To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill these requirements, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment.The ITER port plug test facility (PPTF) provides the possibility to test upper and equatorial port plugs before installation on the machine. The port plug test facility is composed of several test stands. These test stands are first used in the domestic agencies and on the ITER Organization site to test the port plugs at the end of manufacturing. Two of these stands are installed later in the ITER hot cell facility to test the port plugs after refurbishment. The port plugs to be tested are the Ion Cyclotron (IC) heating and current drive antennas, Electron Cyclotron (EC) heating and current drive launchers, diagnostics and test blanket modules port plugs.Test stands shall be capable to perform environmental and functional tests. The test stands are composed of one vacuum tank (3.3 m in diameter, 5.6 m long) and the associated heating, vacuum and control systems. The vacuum tank shall achieve an ultimate pressure of 1 × 10?5 Pa at 100 °C containing a port plug. The heating system shall provide water at 240 °C and 4.4 MPa to heat up the port plugs. Openings are provided on the back of the vacuum tank to insert probes for the functional tests.This paper describes the tests to be performed on the port plugs and the conceptual design of the port plug test facility. The configuration of the standalone test stands and the integration in the hot cell facility are presented.  相似文献   

19.
Magnum-PSI is a linear plasma generator, built at the FOM-Institute for Plasma Physics Rijnhuizen. Subject of study will be the interaction of plasma with a diversity of surface materials. The machine is designed to provide an environment with a steady state high-flux plasma (up to 1024 H+ ions/m2 s) in a 3 T magnetic field with an exposed surface of 80 cm2 up to 10 MW/m2. Magnum-PSI will provide new insights in the complex physics and chemistry that will occur in the divertor region of the future experimental fusion reactor ITER and reactors beyond ITER. The conditions at the surface of the sample can be varied over a wide range, such as plasma temperature, beam diameter, particle flux, inclination angle of the target, background pressure and magnetic field. An important subject of attention in the design of the machine was thermal effects originating in the excess heat and gas flow from the plasma source and radiation from the target.  相似文献   

20.
Recently, fabrication of the first superconducting coil in JT-60SA tokamak (EF4 coil) was finished. EF4 coil has ten double pancake (DP) coils. All DP coils were stacked up to form the winding pack. In order to check the manufacturing error of DP coils, their circularities (in-plane ellipticities) were evaluated for all DP coils. Positions of conductors for each DP coil were measured before curing process. Error bars of the current centers, which were used for the index for DP coil's circularity, ranged between 1.1 and 2.5 mm. During stacking the DP coils, the positions of these coils were optimized in order to cancel the error of circulation of the winding pack. As the result, the manufacturing error of the radial current center was achieved 0.6 mm for the winding pack. This value was an order of magnitude smaller than the required manufacturing error of EF4 coil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号