首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 4 毫秒
1.
    
Although multiple methods have been proposed for human action recognition, the existing multi-view approaches cannot well discover meaningful relationship among multiple action categories from different views. To handle this problem, this paper proposes an multi-view learning approach for multi-view action recognition. First, the proposed method leverages the popular visual representation method, bag-of-visual-words (BoVW)/fisher vector (FV), to represent individual videos in each view. Second, the sparse coding algorithm is utilized to transfer the low-level features of various views into the discriminative and high-level semantics space. Third, we employ the multi-task learning (MTL) approach for joint action modeling and discovery of latent relationship among different action categories. The extensive experimental results on M2I and IXMAS datasets have demonstrated the effectiveness of our proposed approach. Moreover, the experiments further demonstrate that the discovered latent relationship can benefit multi-view model learning to augment the performance of action recognition.  相似文献   

2.
Human actions can be considered as a sequence of body poses over time, usually represented by coordinates corresponding to human skeleton models. Recently, a variety of low-cost devices have been released, able to produce markerless real time pose estimation. Nevertheless, limitations of the incorporated RGB-D sensors can produce inaccuracies, necessitating the utilization of alternative representation and classification schemes in order to boost performance. In this context, we propose a method for action recognition where skeletal data are initially processed in order to obtain robust and invariant pose representations and then vectors of dissimilarities to a set of prototype actions are computed. The task of recognition is performed in the dissimilarity space using sparse representation. A new publicly available dataset is introduced in this paper, created for evaluation purposes. The proposed method was also evaluated on other public datasets, and the results are compared to those of similar methods.  相似文献   

3.
基于上下文的机场目标识别方法   总被引:10,自引:0,他引:10  
提出了一种基于上下文的机场目标识别方法,将机场各组成部分间存在的依赖关系应用于识别技术中,以提高识别效率。根据机场目标具有明显的方向性这一特点,使用Gabor滤波器对输入图像进行滤波,将图像信息按不同尺度和方向分解至多个通道,获取相应的特征图,并利用Radon变换从特征图中提取线特征。通过分析组成机场目标的各线特征之间的相互关系,利用上下文信息,制定一系列判决准则,实现对机场目标的有效识别。  相似文献   

4.
In this paper we introduce a novel method for action/movement recognition in motion capture data. The joints orientation angles and the forward differences of these angles in different temporal scales are used to represent a motion capture sequence. Initially K-means is applied on training data to discover the most representative patterns on orientation angles and their forward differences. A novel K-means variant that takes into account the periodic nature of angular data is applied on the former. Each frame is then assigned to one or more of these patterns and histograms that describe the frequency of occurrence of these patterns for each movement are constructed. Nearest neighbour and SVM classification are used for action recognition on the test data. The effectiveness and robustness of this method is shown through extensive experimental results on four standard databases of motion capture data and various experimental setups.  相似文献   

5.
Much of the existing work on action recognition combines simple features with complex classifiers or models to represent an action. Parameters of such models usually do not have any physical meaning nor do they provide any qualitative insight relating the action to the actual motion of the body or its parts. In this paper, we propose a new representation of human actions called sequence of the most informative joints (SMIJ), which is extremely easy to interpret. At each time instant, we automatically select a few skeletal joints that are deemed to be the most informative for performing the current action based on highly interpretable measures such as the mean or variance of joint angle trajectories. We then represent the action as a sequence of these most informative joints. Experiments on multiple databases show that the SMIJ representation is discriminative for human action recognition and performs better than several state-of-the-art algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号