首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed electrostatic system for manipulating small particles with diameters in the range of several micrometers to 100 μm. The electrostatic manipulation probe consists of a monopole pin electrode. When voltage is applied to the electrode, a dielectrophoresis force generated in the nonuniform electrostatic field is applied to the particle near the tip of the electrode. The particle is captured with the application of voltage, and then it is released from the probe by applying a high voltage of the opposite polarity. It is possible to manipulate not only insulative but also weakly conductive particles. A three-dimensional field calculation and a measurement of the adhesion force were conducted to evaluate the force balance for the capture and release of a particle. On the basis of these investigations, we demonstrated the manipulation of actual lunar dust returned by the Apollo 11 lunar surface mission.  相似文献   

2.
In this paper, two-step electrochemical synthesis method is reported for the fabrication of Au–polyaniline (Au–PANI) composite film. Initially, PANI film was electrochemically synthesized by using chronopotentiometery with optimized process parameters on platinum electrode. The synthesized PANI film acts as working electrode for the decoration of Au particles on the surface of PANI film by using cyclovoltammetry (CV) technique. Later, these films were irradiated under high vacuum (∼5 × 10−6 Torr) at room temperature with 40 MeV C5+ ion beam at various fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. The Au–PANI composite films were characterized before and after irradiation by using micro-Raman, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The characteristic peaks of the Raman spectrum of Au–PANI composite films were reduced after irradiation. XRD spectra exhibited the decrease in the peak intensity. Moreover, interchain distance, interplanar distance, micro strain, dislocation density and distortion parameters were calculated. The analysis revealed a significant variation in these parameters with an increase in the ion fluence, which is in line with the Raman analysis. SEM shows the formation of clusters with porous structure after irradiation.  相似文献   

3.
The morphological evolution of γ′ precipitates in a nickel-based superalloy K5 was studied by zone melting directional solidification under vacuum conditions. The results show that at the lower cooling rate of 12.42 K s−1, γ′ precipitates remand big cuboids. γ′ particles become smaller at the cooling rate ranges from 12.42 to 38.80 K s−1. For a rather fast cooling rate of 50.16 K s−1, γ′ particles retain a spherical shape. The experiments show that big cuboids will become unstable and split into several small ones at the lower cooling rate of 1.1 K s−1. The mechanism of the evolution of the γ′ morphologies is also analyzed by introducing a new parameter-shape factor which classifies the total energy into several energy levels. Based on this, the effect of the cooling rate on the γ′ morphology is discussed.  相似文献   

4.
Cu/diamond composites were fabricated by spark plasma sintering (SPS) after the surface pretreatment of the diamond powders, in which the diamond particles were mixed with copper powder and tungsten powder (carbide forming element W). The effects of the pretreatment temperature and the diamond particle size on the thermal conductivity of diamond/copper composites were investigated. It was found that when 300 μm diamond particles and Cu–5 wt.% W were mixed and preheated at 1313 K, the composites has a relatively higher density and its thermal conductivity approaches 672 W (m K)−1.  相似文献   

5.
The characteristics of the metallic powder surface play a critical role in the development of strong bonds between particles during sintering, especially when introducing elements with a high affinity for oxygen. In this study, Mn and Si have been combined in a Fe–Mn–Si–C master alloy powder in order to reduce their chemical activity and prevent oxidation during the heating stage of the sintering process. However, when this master alloy powder is mixed with an iron base powder, differences in chemical activity between both components can lead to an oxygen transfer from the iron base powder to the surface of the master alloy particles. The present research is focused on studying the evolution of the master alloy particle surface during the early stages of sintering. Surface characterization by X-ray Photoelectron Spectroscopy (XPS) shows that the master alloy powder surface is mostly covered by a thin easily reducible iron oxide layer (~ 1 nm). Mn–Si particulate oxides are found as inclusions in specific areas of the surface. Evolution of oxides during sintering was studied on green compacts containing iron powder, graphite and Fe–Mn–Si–C master alloy powder that were heat treated in vacuum (10 6 mbar) at different temperatures (from 400, 600, 800 to 1000 °C) and analyzed by means of XPS. Vacuum sintering provides the necessary conditions to remove manganese and silicon oxides from the powder surface in the range of temperatures between 600 °C and 1000 °C. When sintering in vacuum, since the gaseous products from reduction processes are continuously eliminated, oxidation of master alloy particles due to oxygen transfer through the atmosphere is minimized.  相似文献   

6.
Nanocomposites of Al2O3/Ni–Co prepared using Al2O3 of various particle sizes were fabricated by pulse current electrodeposition. Their superplastic tensile deformation was investigated at strain rates of 8.33 × 10−4 s−1 and 1.67 × 10−3 s−1 and temperatures of 723–823 K. The Al2O3 particle sizes and the deformation temperature had significant influence on the elongation of the deposited materials. The optimal superplastic condition and the maximum elongation were determined. A low temperature superplasticity with elongation of 632% was achieved at a strain rate of 1.67 × 10−3 s−1 and 823 K. Scanning electron microscopy and transmission electron microscopy were used to examine the microstructures of the deposited and deformed samples. The grains grew to a micrometer dimensions and were elongated along the tensile direction after superplastic deformation. Superplasticity in electrodeposited nanocomposites is related to the presence of S at grain boundaries and to deformation twinning.  相似文献   

7.
Ceria particles in an average size range from 8 to 70 nm were synthesized from cerium nitrate solutions by electrolysis at AC 0.1–10 Hz using platinum wire electrodes at 25–80 °C. The produced ceria particles dissolved in low pH solutions (pH 1.1–2.7) at a longer electrolysis time (>12 h), which caused the decrease of particle size. Increase of the concentration of Ce3+ ions and increase of the electrolysis temperature were effective to enhance the particle yield. Small growth of particles (10–20 nm) was measured when the electrolysis temperature was increased to 60–80 °C. When the applied frequency was increased, the particle size decreased. A theoretical equation of particle size as functions of Ce3+ ion concentration, electrolysis temperature and applied frequency was derived. The experimental results were in accordance with the prediction from the theoretical model.  相似文献   

8.
The glass samples of the Ge–S–I system were synthesized by plasma-enhanced chemical vapor deposition (PECVD) in a low-temperature non-equilibrium RF-plasma discharge. The vapors of S and GeI4 were the initial substances. The process was carried out in a flowing quartz reactor at the walls temperature of 300–500 °C and the total pressure range of 1.9–22.8 Torr. The phase and the elemental compositions of the deposited glassy batches were investigated. The glasses obtained by melting of the solid reaction products were homogenized in the evacuated quartz glass ampoule and they were studied by DSC, X-ray microanalysis, and atomic emission spectroscopy. The proposed method allows to prepare the glasses of the system Ge–S–I with Si content less than 3  10−5 wt.%.  相似文献   

9.
Aluminum matrix composites reinforced with diamond particles were consolidated by spark plasma sintering. Metalloid silicon was added (Al–Si/diamond composites) to investigate the effect. Silicon addition promotes the formation of molten metal during the sintering to facilitate the densification and enhance the interfacial bonding. Meanwhile, the alloying metal matrix precipitates the eutectic-Si on the diamond surfaces acting as the transitional part to protect the improved interface during the cooling stage. The improved interface and precipitating eutectic-Si phase are mutually responsible for the optimized properties of the composites. In this study, for the Al–Si/diamond composite with 55 vol.% diamonds of 75 μm diameter, the thermal conductivity increased from 200 to 412 Wm−1 K−1, and the coefficient of thermal expansion (CTE) decreased from 8.9 to 7.3 × 10−6 K−1, compared to the Al/diamond composites. Accordingly, the residual plastic strain was 0.10 × 10−3 during the first cycle and rapidly became negligible during the second. Additionally, the measured CTE of the Al–Si/diamond composites was more conform to the Schapery’s model.  相似文献   

10.
Diatomaceous earth (DE), naturally available silica, originated from fossilized diatoms has been explored for use in drug delivery applications as a potential substitute for synthetic silica materials. The aim of this study is to explore the influence of particle size, morphology and surface modifications of diatom silica microparticles on their drug release properties. Raw DE materials was purified and prepared to obtain high purity DE silica porous particles with different size and morphologies. Comparative scanning electron microscope and particle characterization confirmed their particle size including irregularly shaped silica particles (size 0.1–1 μm, classified as “fine”), mixed fractions (size 1–10 μm, classified as “mixture”) and pure, unbroken DE structures (size 10–15 μm, classified as “entire”). Surface modification of DE with silanes and phosphonic acids was performed using standard silanization and phosphonation process to obtain surface with hydrophilic and hydrophobic properties. Water insoluble (indomethacin) and water soluble (gentamicin) drugs were loaded in DE particles to study their drug release performances. In vitro drug release studies were performed over 1–4 weeks, to examine the impact of the particle size and hydrophilic/hydrophobic functional groups. The release studies showed a biphasic pattern, comprising an initial burst release for 6 h, followed by near-zero order sustained release. This study demonstrates the potential of silica DE particles as a natural carrier for water soluble and insoluble drugs with release controlled by their morphological and interfacial properties.  相似文献   

11.
《Materials Research Bulletin》2013,48(11):4449-4453
The flake-like Ba1−xLaxCoxFe12−xO19 (x = 0.0–0.4) were synthesized using sol–gel combustion synthesis process followed by the thermal insulation process and heating treatment. The synthesis process was investigated and the structure details, morphology, and magnetic properties were evaluated. TG/DTA was used to investigate the formation mechanism and to identify the thermal insulation temperature at 400 °C followed by the heat treatment temperature at 1200 °C. XRD patterns demonstrated that the unit cell volume and particle size decreased with the increase of the substitution content. The typical particles size was in the range of 1–2 μm in the planar dimension whilst the thickness was in the range of 200–500 nm. It was found from the VSM graphs that the saturation magnetizations Ms reached a maximum of 68.15 emu g−1 at x = 0.3 and then decreases to 64.72 emu g−1 at x = 0.3 whilst the coercivity Hc sustained decreases from 2190.70 to 1181.07 Oe g−1 with substitution content increased from 0 to 0.4.  相似文献   

12.
A novel low-temperature (600–850 °C), chemical vapor deposition method, involving a simple reaction between disiloxane (H3Si–O–SiH3) and ammonia (NH3), is described to deposit stoichiometric, Si2N2O, and non-stoichiometric, SiOxNy, silicon oxynitride films (5–500 nm) on Si substrates. Note, the gaseous reactants are free from carbon and other undesirable contaminants. The deposition of Si2N2O on Si (with (1 0 0) orientation and a native oxide layer of 1 nm) was conducted at a pressure of 2 Torr and at extremely high rates of 20–30 nm min−1 with complete hydrogen elimination. The deposition rate of SiOxNy on highly-doped Si (with (1 1 1) orientation but without native oxide) at 10−6 Torr was ∼1.5 nm min−1, and achieved via the reaction of disiloxane with N atoms, generated by an RF source in an MBE chamber. The phase, composition and structure of the oxynitride films were characterized by a variety of analytical techniques. The hardness of Si2N2O, and the capacitance–voltage (CV) as a function of frequency and leakage current density–voltage (JLV) characteristics were determined on MOS (Al/Si2N2O/SiO/p-Si) structures. The hardness, frequency-dispersionless dielectric permittivity (K), and JL at 6 V for a 20 nm Si2N2O film were determined to be 18 GPa, 6 and 0.05–0.1 nA cm−2, respectively.  相似文献   

13.
Low-temperature reflection spectra of lithium hydride (LiH) single crystals cleaved in ultrahigh vacuum (3 × 10−10 Torr, T = 10 K), were recorded using synchrotron radiation in vacuum ultraviolet spectral region. Based on the obtained experimental data, the optical functions of LiH in the energy range from 3.7 to 35 eV were analyzed using the Kramers–Krönig relations. Time-resolved photoluminescence excitation spectra were studied in detail for the near edge free exciton-phonon luminescence at 4.67 eV and photoluminescence at 2.4 eV due to the Bi3+ impurity centers. The effect of multiplication of electronic excitations due to inelastic scattering of hot photoelectrons and hot photoholes was revealed at photon energies above 15 eV (more than 3Eg). It was found that the radiative lifetime for free excitons in LiH at 4.67 eV is less than 1 ns as low temperatures as at 10 K. The interpretation of the electronic band structure of lithium hydride in the ultraviolet and vacuum ultraviolet spectral regions were carried out on the basis of the present experimental results with the involvement of the available band structure calculations.  相似文献   

14.
《Materials Research Bulletin》2006,41(7):1392-1402
In situ high temperature X-ray diffraction (HTXRD) studies on monoclinic silicalite-1 (S-1, silica polymorph of ZSM-5) and an orthorhombic metallosilicate molecular sieve, zirconium silicalite-1 (ZrS-1) with MFI structure (Si/Zr = 50) have been carried out using a laboratory X-ray diffractometer with an Anton Parr HTK 1600 attachment. While the structure of the S-1 collapsed at 1123 K forming α-cristobalite. S-1 and ZrS-1 showed a complex thermal expansion behavior in the temperature range 298–1023 K, ZrS-1 was stable. Powder X-ray diffraction (PXRD) data taken in this region have shown strong negative lattice thermal expansion coefficient, αV = −6.75 × 10−6 and −17.92 × 10−6 K−1 in the temperature range 298–1023 K−1 for S-1 and ZrS-1 samples, respectively. The thermal expansion behavior of S-1 and ZrS-1 is anisotropic, with the relative strength of contraction along a axis is more than that along b and c axes. Three different thermal expansion regions could be identified in the overall temperature range (298–1023 K) studied, corroborating with the three steps of weight loss in the TG curve of ZrS-1 sample. While the region between 298 and 423 K, displays positive thermal expansion coefficient with αV = 2.647 × 10−6 and 4.24 × 10−6 K−1, the second region between 423 and 873 K shows strong negative thermal expansion (NTE) coefficient αV = −7.602 × 10−6 and −15.04 × 10−6 K−1, respectively, for S-1 and ZrS-1 samples. The region between 873 and 1023 K, shows a very strong NTE coefficient with αV = −12.08 × 10−6 and −45.622 × 10−6 K−1 for S-1 and ZrS-1, respectively, which is the highest in the whole temperature range studied. NTE seen over a temperature range 298–1023 K could be associated with transverse vibrations of bridging oxygen atoms in the structure which results in an apparent shortening of the Si–O distances.  相似文献   

15.
The hot deformation characteristics of an as-extruded ZM31 (Mg–Zn–Mn) magnesium alloy with an addition of 3.2 wt.% Y, namely ZM31 + 3.2Y, have been studied via isothermal compression testing in a temperature range of 300–400 °C and a strain rate range of 0.001–1 s 1. A constitutive model based on hyperbolic-sine equation along with processing maps was used to describe the dependence of flow stress on the strain, strain rate, and deformation temperature. The flow stress was observed to decrease with increasing deformation temperature and decreasing strain rate. The deformation activation energy of this alloy was obtained to be 241 kJ/mol. The processing maps at true strains of 0.1, 0.2, 0.3 and 0.4 were generated to determine the region of hot workability of the alloy, with the optimum hot working parameters being identified as deformation temperatures of 340–500 °C and strain rates of 0.001–0.03 s 1. EBSD examinations revealed that the dynamic recrystallization occurred more extensively and the volume fraction of dynamic recrystallization increased with increasing deformation temperature. The role of element Y and second-phase particles (I- and W-phases) during hot compressive deformation was discussed.  相似文献   

16.
Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10−6 to 6 × 10−6/K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al2Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.  相似文献   

17.
《Materials Research Bulletin》2013,48(11):4901-4906
Nanocrystalline titanium oxide (TiO2) thin films were deposited on silicon (1 0 0) and quartz substrates at various oxygen partial pressures (1 × 10−5 to 3.5 × 10−1 mbar) with a substrate temperature of 973 K by pulsed laser deposition. The microstructural and optical properties were characterized using Grazing incidence X-ray diffraction, atomic force microscopy, UV–visible spectroscopy and photoluminescence. The X-ray diffraction studies indicated the formation of mixed phases (anatase and rutile) at higher oxygen partial pressures (3.5 × 10−2 to 3.5 × 10−1 mbar) and strong rutile phase at lower oxygen partial pressures (1 × 10−5 to 3.5 × 10−3 mbar). The atomic force microscopy studies showed the dense and uniform distribution of nanocrystallites. The root mean square surface roughness of the films increased with increasing oxygen partial pressures. The UV–visible studies showed that the bandgap of the films increased from 3.20 eV to 3.60 eV with the increase of oxygen partial pressures. The refractive index was found to decrease from 2.73 to 2.06 (at 550 nm) as the oxygen partial pressure increased from 1.5 × 10−4 mbar to 3.5 × 10−1 mbar. The photoluminescence peaks were fitted to Gaussian function and the bandgap was found to be in the range ∼3.28–3.40 eV for anatase and 2.98–3.13 eV for rutile phases with increasing oxygen partial pressure from 1 × 10−5 to 3.5 × 10−1 mbar.  相似文献   

18.
Fatigue properties of 2024-T351 aluminium alloy are investigated in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime. Endurance tests are performed with ultrasonic equipment at 20 kHz cycling frequency at load ratios of R = −1, R = 0.1 and R = 0.5 up to 1010 cycles. Additional servo-hydraulic tests between 8 and 10 Hz at R = 0.1 show no frequency influence on fatigue lifetimes. Linear lines in double logarithmic SN plots are used to approximate data. Slope exponents of approximation lines increase with increasing numbers of cycles for all load ratios. Failures above 5 × 109 cycles (R = −1 and R = 0.1) or 1010 cycles (R = 0.5) occur, and no fatigue limit is found. Fatigue cracks leading to failures above 109 cycles are initiated at the surface or slightly below at broken constituent particles or at agglomerations of fractured particles, which are probably Al7Cu2(Fe, Mn). Specimens stressed with more than 1010 cycles at R = −1 without failure show several cracks starting at constituent particles. Maximum crack lengths are 30 μm, which is considerably below grain size.  相似文献   

19.
Mg–3Al–1Zn–2Ca (AZX312) alloy has been forged in the temperature range of 350–500 °C and at speeds in the range of 0.01–10 mm s−1 to produce a rib-web shape with a view to validate the processing map and study the microstructural development. The process was simulated through finite-element method to estimate the local and average strain rate ranges in the forging envelope. The processing map exhibited two domains in the following ranges: (1) 350–450 °C/0.0003–0.05 s−1 and (2) 450–500 °C/0.03–0.7 s−1 and these represent dynamic recrystallization (DRX) and intercrystalline cracking, respectively. The optimal workability condition according to the processing map is 425–450 °C/0.001–0.01 s−1. A wide flow instability regime occurred at higher strain rates diagonally across the map, which caused flow localization that should be avoided in forming this alloy. The experimental load–stroke curves correlated well with the simulated ones and the observed microstructural features in the forged components matched with the ones predicted by the processing map.  相似文献   

20.
Lightweight carbon-bonded carbon fiber (CBCF) composites were fabricated with chopped carbon fibers and dilute phenolic resin solution by pressure filtration, followed by carbonization at 1000 °C in argon. The as-prepared CBCF composites had a homogenous fiber network distribution in xy direction and quasi-layered structure in z direction. The pyrolytic carbon derived from phenolic resin was mainly accumulated at the intersections and surfaces of chopped carbon fibers. The composites possessed compressive strengths ranged from 0.93–6.63 MPa in xy direction to 0.30–2.01 MPa in z direction with a density of 0.162–0.381 g cm 3. The thermal conductivity increased from 0.314–0.505 to 0.139–0.368 Wm 1 K 1 in xy and z directions, respectively. The experimental results indicate that the CBCF composites prepared by this technique can significantly contribute to improve the thermal insulation and mechanical properties at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号