首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1].The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices.For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications.This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS.  相似文献   

2.
ITER CODAC Design identified the need for slow and fast control plant systems, based respectively on industrial automation technology with maximum sampling rates below 100 Hz, and on embedded technology with higher sampling rates and more stringent real-time requirements. The fast system is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and high performance networks (HPN).This contribution presents the engineering design of two prototypes of a fast plant system controller (FPSC), specialized for data acquisition, constrained by ITER technological choices. This prototyping activity contributes to the Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. The prototypes will be built using two different form factors, PXIe and ATCA, with the aim of comparing the implementations. The presented solution took into consideration channel density, synchronization, resolution, sampling rates and the needs for signal conditioning such as filtering and galvanic isolation. The integration of the two controllers in the standard CODAC environment is also presented and discussed. Both controllers contain an EPICS IOC providing the interface to the mini-CODAC which will be used for all testing activities. The alpha version of the FPSC is also presented.  相似文献   

3.
4.
This paper presents an overview of the Control, Data Acquisition, and Communication system (CODAC) at the COMPASS tokamak: the hardware set-up, software implementation, and communication tools are described.The diagnostics and the data acquisition are tailored for high spatial and temporal resolution required by the COMPASS physics programme, which aims namely at studies of the plasma edge, pedestal, and Scrape-off-Layer (SOL). Studies of instabilities and turbulence are also an integral part of the programme. Therefore, the data acquisition consists of more than 1000 channels, sampled at rates from 500 kS/s up to 2 GS/s.Presently, the feedback system controls the plasma position and shape, plasma current, and density and it includes 32 analogue input channels as well as 1 digital input/output channel and 8 analogue outputs. The feedback control runs within the Multi-threaded Application Real-Time executor (MARTe) framework with two threads, a 500 μs cycle to control slow systems and a 50 μs cycle to control the fast feedback power supplies for plasma position control.In this paper, special attention is paid to the links between the systems, to the hardware and software connections, and to the communication. The hardware part is described, the software framework is addressed, and the particular implementation – the dedicated software modules, communication protocols, and links to the database are described.  相似文献   

5.
6.
In recent 2 years, various algorithms to control plasma shape, current and density have been implemented or improved for EAST tokamak. These plasma control performances have been verified by either simulated or actual experimental operation, and thus plasma control basis has been established for the long pulse operation and high performance H-mode plasma operation with low hybrid wave (LHW) and ion cyclotron resonance frequency (ICRF) heating. Startup simulation has been done by using TOKSYS code for the plasma breakdown in either 3.1 Wb or 4.5 Wb initial poloidal flux state and the scenarios proved to be robust and used for routine operation. Various shape configurations have been well feedback controlled by using ISOFLUX limited, double-null or single null algorithms based on RTEFIT equilibrium reconstruction. For the long pulse operation, strike point control and magnetics drift compensation have been implemented in the plasma control system (PCS). To improve the operation safety and efficiency, the verification of magnetic diagnostics before plasma breakdown has been demonstrated adequate to prevent a discharge in case of key sensor failure.  相似文献   

7.
We report on the design of a new plasma control system for the HBT-EP tokamak that utilizes a graphical processing unit (GPU) to magnetically control the 3D perturbed equilibrium state [1] of the plasma. The control system achieves cycle times of 5 μs and I/O latencies below 10 μs for up to 96 inputs and 64 outputs. The number of state variables is in the same order. To handle the resulting computational complexity under the given time constraints, the control algorithms are designed for massively parallel processing. The necessary hardware resources are provided by an NVIDIA Tesla M2050 GPU, offering a total of 448 computing cores running at 1.3 GHz each. A new control architecture allows control input from magnetic diagnostics to be pushed directly into GPU memory by a D-TACQ ACQ196 digitizer, and control output to be pulled directly from GPU memory by two D-TACQ AO32 analog output modules. By using peer-to-peer PCI express connections, this technique completely eliminates the use of host RAM and central processing unit (CPU) from the control cycle, permitting single-digit microsecond latencies on a standard Linux host system without any real-time extensions.  相似文献   

8.
SPIDER, the ion source test bed in the ITER neutral beam test facility, is under construction and its operation is expected to start in 2014. Control and data acquisition for SPIDER are undergoing final design. SPIDER CODAS, as the control and data acquisition system is referred to, is requested to manage 25 plant units, to acquire 1000 analogue signals with sampling rates ranging from a few S/s to 10 MS/s, to acquire images with up to 100 frames per second, to operate with long pulses lasting up to 1 h, and to sustain 200 MB/s data throughput into the data archive with an annual data storage amount of up to 50 TB. SPIDER CODAS software architecture integrates three open-source software frameworks each addressing specific system requirements. Slow control exploits the synergy among EPICS and Siemens S7 programmable controllers. Data handling is by MDSplus a data-centric framework that is geared towards the collection and organization of scientific data. Diagnostics based on imaging drive the design of data throughput and archive size. Fast control is implemented by using MARTe, a data-driven, object-oriented, real-time environment. The paper will describe in detail the progress of the system hardware and software architecture and will show how the software frameworks interact to provide the functions requested by SPIDER CODAS. The paper will focus on how the performance requirements can be met with the described SPIDER CODAS architecture, describing the progress achieved by carrying out prototyping activities.  相似文献   

9.
The presently available processing power in generic processing units (GPU) combined with state-of-the-art programmable logic devices enables the implementation of complex algorithms for plasma diagnostics in a real-time scenario.A tomography diagnostic based on three linear pin-hole cameras each with eight lines of sight has been developed for the ISTTOK tokamak. The plasma emissivity in a poloidal cross-section is computed locally on a sub-millisecond time scale, using a variant of the Fourier-Bessel algorithm. The output signals are then used for active plasma position control.The data acquisition and reconstruction system is based on ATCA technology and consists of one acquisition board with integrated FPGA capabilities and a dual-core Intel module running RTAI Linux.In this paper, the tomographic algorithm and some preliminary results of the real-time plasma position control are presented with a performance benchmarking against other available positioning diagnostics. The algorithm has shown to be accurate and the system has successfully controlled the plasma position during a plasma current reversal.  相似文献   

10.
The superconducting stellarator device Wendelstein 7-X, currently under construction, is the key device for the proof of stellarator optimization principles. To establish the optimized stellarator as a serious candidate for a fusion reactor, reactor-relevant dimensionless plasma parameters must be achieved in fully integrated steady-state scenarios. After more than 10 years of construction time, the completion of the device is now approaching rapidly (mid-2014). We discuss the most important lessons learned during the device assembly and first experiences with coming major work packages. Those are (a) assembly of about 2500 large, water-cooled, 3d-shaped in-vessel component elements; (b) assembly of in total 14 superconducting current leads, one pair for each coil type; and (c) assembly of the device periphery including diagnostics and heating systems. In the second part we report on the present status of planning for the first operation phase (5–10 s discharge duration at 8 MW heating power), the completion and hardening of the device for full power steady-state operation, and the second operation phase (up to 30 min discharge duration at 10 MW heating power). It is the ultimate goal of operation phase one to develop credible and robust discharge scenarios for the high-power steady-state operation phase two. Beyond the improved equilibrium, confinement, and stability properties owing to stellarator optimization, this requires density control, impurity control, edge iota control as well as high density microwave heating. Of paramount importance is the operation of the island divertor, which is realized in the first operation phase as an inertially cooled conventional graphite target divertor. It will be replaced later on by the steady-state capable island divertor with its water-cooled carbon fiber reinforced carbon target elements.  相似文献   

11.
The real-time control system of RFX-mod, in operation since 2005, has been successful and has allowed several important achievements in the RFX physics research program. As a consequence of this fact, new control algorithms are under investigation, which are more demanding in terms of both enhanced computing power and reduced system latency, currently around 1.5 ms. For this reason, a major upgrade of the system is being considered, and a new architecture has been proposed, taking advantage of the rapid evolution of computer technology in the last years. The central component of the new architecture is a Linux-based multicore server, where individual cores replace the VME computers. The server is connected to the I/O via PCI-e based bus extenders, and every PCI-e connection is managed by a separate core. The system is supervised by MARTe, a software framework for real-time applications written in C++ and developed at JET and currently used for the JET vertical stabilization and in other fusion devices.  相似文献   

12.
DIII-D is planning to implement off-axis neutral beam current drive by neutral beam injection through a midplane port at angles up to 15° from horizontal. To accommodate the beam-line tilting, the following modifications are planned: (1) move the beam line away from the tokamak by 0.39 m to allow for a 0.68 m inside diameter welded bellows of necessary length to provide 15° of vertical motion between the vessel port and the beam line; (2) reduce the vertical height of the injected beam from 0.48 m to 0.43 m to provide clearance for the inclined beam as it passes through the length of the vessel port; (3) add a linkage system between the front of the beam line and the tokamak to restrain the NB against the vacuum loading from the bellows while maintaining zero roll about the axis of the beam line as it is moved about a virtual pivot axis; (4) add a forward and two rear vertical actuators for raising and lowering the beam line (These actuators require coordinated position control to rotate the NB about a virtual pivot axis.); (5) incorporate lateral restraint to comply with seismic requirements.  相似文献   

13.
A set of in-vessel saddle coils has been installed on J-TEXT tokamak. They are proposed for further researches on controlling tearing modes and driving plasma rotation by static and dynamic resonant magnetic perturbations (RMPs). The saddle coils will be energized by DC with the amplitude up to 10 kA, or AC with maximum amplitude up to 5 kA within the frequency range of 1–5 kHz. At DC mode two antiparallel 6-pulse phase thyristor rectifiers are chosen to obtain bidirectional current, while at AC mode an AC–DC–AC converter including a series resonant inverter can generate current of various amplitudes and frequencies. The paper presents the design of the power supply system, based on the definition of the power supply requirements and the feasibility of implementation of the topology and control strategy. Some simulation and experimental results are given in the end.  相似文献   

14.
The neutral beam injection (NBI-1) system has been designed for providing a 300 s deuterium beam of 120 kV/65 A as an auxiliary heating and current drive system of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak. The deuterium beam is produced from a long pulse ion source composed of a bucket-type plasma generator and a multi-aperture tetrode accelerator with the help of discharge power supplies and high voltage (HV) power supplies. The beamline components (BLCs) include a neutralizer with an optical multi-channel analyzer (OMA) section, a bending magnet (BM), an ion dump assembly, a movable calorimeter, beam scrapers, and a cryo-sorption pump system in a rectangular vacuum tank. A beam duct equipped with bellows and a voltage break is placed between the NBI vacuum tank and the KSTAR vacuum vessel. All data and parameters of the NBI system are controlled by a control and data acquisition (CODAQ) system through the EPICS based Ethernet interface.  相似文献   

15.
Research on the DIII-D tokamak focuses on support for next-generation devices such as ITER by providing physics solutions to key issues and advancing the fundamental understanding of fusion plasmas. To support this goal, the DIII-D facility is planning a number of upgrades that will allow improved plasma heating, control, and diagnostic measurement capabilities. The neutral beam system has recently added an eighth ion source and one of the beamlines is currently being rebuilt to allow injection of 5 MW of off-axis power at an angle of up to 16.5° from the horizontal. The electron cyclotron heating (ECH) system is adding two additional gyrotrons and is using new launchers that can be aimed poloidally in real-time by an improved plasma control system. The fast wave heating system is being upgraded to allow two of the three launchers to inject up to 2 MW each in future experiments. Several diagnostics are being added or upgraded to more thoroughly study fluctuations, fast ions, heat flux to the walls, plasma flows, rotation, and details of the plasma density and temperature profiles.  相似文献   

16.
The commissioning and the initial operation for the first plasma in the KSTAR device have been accomplished successfully without any severe failure preventing the device operation and plasma experiments. The commissioning is classified into four steps: vacuum commissioning, cryogenic cool-down commissioning, magnet system commissioning, and plasma discharge.Vacuum commissioning commenced after completion of the tokamak and basic ancillary systems construction. Base pressure of the vacuum vessel was about 3 × 10?6 Pa and that of the cryostat about 2.7 × 10?4 Pa, and both levels meet the KSTAR requirements to start the cool-down operation. All the SC magnets were cooled down by a 9 kW rated cryogenic helium facility and reached the base temperature of 4.5 K in a month. The performance test of the superconducting magnet showed that the joint resistances were below 3 nΩ and the resistance to ground after cool-down was over 1 GΩ. An ac loss test of each PF coil made by applying a dc biased sinusoidal current showed that the coupling loss was within the KSTAR requirement with the coupling loss time constant less than 35 ms for both Nb3Sn and NbTi magnets. All the superconducting magnets operated in stable without quench for long-time dc operation and with synchronized pulse operation by the plasma control system (PCS). By using an 84 GHz ECH system, second harmonic ECH assisted plasma discharges were produced successfully with loop voltage of less than 3 V. By the real-time feedback control, operation of 100 kA plasma current with pulse length up to 865 ms was achieved, which also meet the first plasma target of 100 kA and 100 ms. The KSTAR device will be operated to meet the missions of steady-state and high-beta achievement by system upgrades and collaborative researches.  相似文献   

17.
18.
To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill these requirements, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment.The ITER port plug test facility (PPTF) provides the possibility to test upper and equatorial port plugs before installation on the machine. The port plug test facility is composed of several test stands. These test stands are first used in the domestic agencies and on the ITER Organization site to test the port plugs at the end of manufacturing. Two of these stands are installed later in the ITER hot cell facility to test the port plugs after refurbishment. The port plugs to be tested are the Ion Cyclotron (IC) heating and current drive antennas, Electron Cyclotron (EC) heating and current drive launchers, diagnostics and test blanket modules port plugs.Test stands shall be capable to perform environmental and functional tests. The test stands are composed of one vacuum tank (3.3 m in diameter, 5.6 m long) and the associated heating, vacuum and control systems. The vacuum tank shall achieve an ultimate pressure of 1 × 10?5 Pa at 100 °C containing a port plug. The heating system shall provide water at 240 °C and 4.4 MPa to heat up the port plugs. Openings are provided on the back of the vacuum tank to insert probes for the functional tests.This paper describes the tests to be performed on the port plugs and the conceptual design of the port plug test facility. The configuration of the standalone test stands and the integration in the hot cell facility are presented.  相似文献   

19.
This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.  相似文献   

20.
In a typical physical experimental instrument, such as a fusion or particle physical application, the readout system generally implements an interface between the data acquisition (DAQ) system and the front-end electronics (FEE). The key task of a readout system is to read, pack, and forward the data from the FEE to the back-end data concentration center in real time. To guarantee real-time performance, the VxWorks operating system (OS) is widely used in readout systems. However, VxWorks is not an open-source OS, which gives it has many disadvantages. With the development of multi-core processor and new scheduling algorithm, Linux OS exhibits performance in real-time applications similar to that of VxWorks. It has been successfully used even for some hard real-time systems. Discussions and evaluations of real-time Linux solutions for a possible replacement of VxWorks arise naturally. In this paper, a real-time transmission method based on Linux is introduced. To reduce the number of transfer cycles for large amounts of data, a large block of contiguous memory buffer for DMA transfer is allocated by modifying the Linux Kernel (version 2.6) source code slightly. To increase the throughput for network transmission, the user software is designed into formation of parallelism. To achieve high performance in real-time data transfer from hardware to software, mapping techniques must be used to avoid unnecessary data copying. A simplified readout system is implemented with 4 readout modules in a PXI crate. This system can support up to 48 MB/s data throughput from the front-end hardware to the back-end concentration center through a Gigabit Ethernet connection. There are no restrictions on the use of this method, hardware or software, which means that it can be easily migrated to other interrupt related applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号