首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Neutral Beam Test Facility, which will be built in Padova, Italy, is aimed at developing the ITER heating neutral beam injector (HNB) and at testing and optimizing its operation up to nominal performance before installation on ITER. It requires the development of two independent experiments referred to as SPIDER (source for production of ions of deuterium extracted from Rf plasma) and MITICA (megavolt ITer injector & concept advancement). SPIDER will explore the full-size negative ion source for ITER, whereas MITICA will explore the full-size ITER neutral beam injector. Both experiments will be designed for long-pulse operation, up to 3600 s, as ITER itself. MITICA includes three functional components: the heating neutral beam injector plant system (HNB), which is the device under test; the auxiliary plant system (AUX), which includes all equipment to operate the HNB in the test facility (e.g. the local electric grid to feed the HNB power supplies), and MITICA supervisory system that is an electronics/informatics infrastructure to operate the facility. The paper introduces the requirements for the control and data acquisition systems of the experiments and proposes a preliminary design for both systems. SPIDER, which is preparatory to MITICA and will be developed on a shorter time scale, has no constraints coming from ITER CODAC, whereas MITICA includes the ITER neutral beam injector and therefore must be fully compatible with ITER CODAC.  相似文献   

2.
J-TEXT装置是华中科技大学恢复建造的中型托卡马克装置,已于2007年放电运行,其控制系统采用分布式结构,由多个子系统组成。为提高子系统集成、维护和更新的效率,并有效地管理各子系统、控制装置的运行状态及保障设备和人员安全,J-TEXT装置参考ITER CODAC的设计思路,结合J-TEXT装置的需求设计了J-TEXT CODAC系统。J-TEXT CODAC系统为装置各子系统提供统一的设计模型和相关设计标准,使用EPICS软件作为通讯中间层,设计了全局控制系统、时序和同步控制系统、联锁保护系统,并将原有控制系统改造、集成到J-TEXT CODAC系统中。目前该系统已部署在J-TEXT装置上,在2012年春季以来的多轮实验中运行良好。  相似文献   

3.
The amount of data generated by the infra-red and visible cameras at ITER is expected to be considerably larger than most diagnostics. ITER will have 12 infra-red cameras plus 12 visible cameras in four different equatorial port plugs. Each of the ports will have a Plant System Host (PSH) that will provide a standard image of the plant system to the ITER's Control and Data Access and Communication (CODAC) system.The two key functions of these cameras will be the scientific exploitation with the detection of interesting physics events and the operational protection of the machine, namely the first wall. Already assuming high bandwidth requirements for both audio and video, ITER will provide a separate network for this kind of communication, which will be used to transmit both the experimental and informational data provided by the cameras.This paper presents the current camera plant system design and its interaction with ITER CODAC system and networks. Starting from the camera specifications several alternatives for data collection and compression are discussed. The required inputs from CODAC and a first specification for the internal finite state machine are also presented. Finally, a possible hardware straw man design solution for the plant system hardware is proposed.  相似文献   

4.
The optical diagnostic system of KSTAR consists of visible diagnostics including toroidal and poloidal Hα monitors, a visible survey spectrometer, and filterscopes. A re-entrant cassette made of stainless steel, containing five optical quartz windows has been developed to allow easy access of the visible diagnostics to the plasma. The configuration and manufacturing design of the diagnostic cassette and the installation of optical diagnostic systems within the cassette are described. The structural and thermal analysis of the diagnostic cassette and in situ calibration of optical diagnostics have also been performed. The optical lens system showed good image quality by spot diagram analysis.  相似文献   

5.
ITER will be the world's largest magnetic confinement tokamak fusion device and is currently under construction in southern France. The ITER Plasma Control System (PCS) is a fundamental component of the ITER Control, Data Access and Communication system (CODAC). It will control the evolution of all plasma parameters that are necessary to operate ITER throughout all phases of the discharge. The design and implementation of the PCS poses a number of unique challenges. The timescales of phenomena to be controlled spans three orders of magnitude, ranging from a few milliseconds to seconds. Novel control schemes, which have not been implemented at present-day machines need to be developed, and control schemes that are only done as demonstration experiments today will have to become routine. In addition, advances in computing technology and available physics models make the implementation of real-time or faster-than-real-time predictive calculations to forecast and subsequently to avoid disruptions or undesired plasma regimes feasible. This requires the PCS design to be adaptable in real-time to the results of these forecasting algorithms. A further novel feature is a sophisticated event handling system, which provides a means to deal with plasma related events (such as MHD instabilities or L-H transitions) or component failure. Finally, the schedule for design and implementation poses another challenge. The beginning of ITER operation will be in late 2020, but the conceptual design activity of the PCS has already commenced as required by the on-going development of diagnostics and actuators in the domestic agencies and the need for integration and testing. This activity is presently underway as a collaboration of international experts and the results will be published as a subsequent publication. In this paper, an overview about the main areas of intervention of the plasma control system will be given as well as a summary of the interfaces and the integration into ITER CODAC (networks, other applications, etc.). The limited amount of commissioning time foreseen for plasma control will make extensive testing and validation necessary. This should be done in an environment that is as close to the PCS version running the machine as possible. Furthermore, the integration with an Integrated Modeling Framework will lead to a versatile tool that can also be employed for pulse validation, control system development and testing as well as the development and validation of physics models. An overview of the requirements and possible structure of such an environment will also be presented.  相似文献   

6.
FTU (Frascati Tokamak Upgrade) three-level slow control system has undergone several enhancements during its lifetime, involving essentially the supervisory and medium level, while the lower level is still mainly based on old Westinghouse Numalogic PLCs (Programmable Logic Controller). The legacy PLC controlling the toroidal magnet flywheel generator, named MFG1, is now being replaced with a more modern Siemens Simatic S7 PLC, because of its versatility an the ability to be integrated via standard networking protocol.The upgrade to this family of Siemens PLCs, which in the meantime has been selected as standard by ITER CODAC, has made MFG1 slow control an ideal candidate to deploy ITER CODAC software technologies and architecture to a running plant in an operating tokamak environment. A project has thus been started to port MFG1 control to ITER CODAC I&C architecture using the software package CODAC Core System to interface the PLC with the ITER standard systems for instrumentation and control, Plant System Host (PSH) and Mini-CODAC, developing dedicated HMI (Human–Machine Interface) and realizing the communication layer between MFG1 plant system and FTU supervisor.This paper will give a full account of the project and will report the results that have been obtained up to now, focusing also on the definite advantages provided by a distributed control architecture compared to the supervisor-dependent one still running at FTU, in view of future fusion devices.  相似文献   

7.
J-TEXT tokamak has recently implemented J-TEXT COntrol, Data Access and Communication (CODAC) system on the principle of ITER CODAC. The control network in J-TEXT CODAC system is based on Experimental Physics and Industrial Control System (EPICS). However, former slow plant system controllers in J-TEXT did not support EPICS. Therefore, J-TEXT has designed an EPICS compatible slow controller. And moreover, the slow controller also acts the role of Plant System Host (PSH), which helps non-EPICS controllers to keep working in J-TEXT CODAC system. The basic functionalities dealing with user defined tasks have been modularized into driver or plug-in modules, which are plug-and-play and configured with XML files according to specific control task. In this case, developers are able to implement various kinds of control tasks with these reusable modules, regardless of how the lower-lever functions are implemented, and mainly focusing on control algorithm. And it is possible to develop custom-built modules by themselves. This paper presents design of the slow controller. Some applications of the slow controller have been deployed in J-TEXT, and will be introduced in this paper.  相似文献   

8.
ITER CODAC Design identified the need for slow and fast control plant systems, based respectively on industrial automation technology with maximum sampling rates below 100 Hz, and on embedded technology with higher sampling rates and more stringent real-time requirements. The fast system is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and high performance networks (HPN).This contribution presents the engineering design of two prototypes of a fast plant system controller (FPSC), specialized for data acquisition, constrained by ITER technological choices. This prototyping activity contributes to the Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. The prototypes will be built using two different form factors, PXIe and ATCA, with the aim of comparing the implementations. The presented solution took into consideration channel density, synchronization, resolution, sampling rates and the needs for signal conditioning such as filtering and galvanic isolation. The integration of the two controllers in the standard CODAC environment is also presented and discussed. Both controllers contain an EPICS IOC providing the interface to the mini-CODAC which will be used for all testing activities. The alpha version of the FPSC is also presented.  相似文献   

9.
Inspired by the ITER COntrol, Data Access and Communication (CODAC) and ITER instrumentation and control system, J-TEXT tokamak has upgraded its control system with J-TEXT CODAC system. The J-TEXT CODAC system is based on Experimental Physics and Industrial Control System (EPICS). The J-TEXT CODAC system covers everything in the J-TEXT control system including both central and plant control systems, similar to the ITER I&C system. J-TEXT CODAC system is built around a single central control system called Central CODAC system. All the control functions including conventional control, interlock, safety and other common services are supervised by CCS. The J-TEXT CODAC system has been implemented and tested on J-TEXT. It not only tests some of the ideas in ITER CODAC in real life, but also explores the feasibility of new approaches that is unique in J-TEXT CODAC system.  相似文献   

10.
ITER will consist of roughly 160 plant systems I&C delivered in kind which need to be integrated into the ITER control infrastructure. To make the integration of all these plant systems I&C, a smooth operation, the CODAC (Controls, Data Access & Communications) group release every year the core software environment which consists of many applications. In this paper we would like to describe what configuration data and how it is modeled in the version 2. The model is based on three views, the physical one which lists the components with their signals, the functional view which describes the control functions and variables required to implement them and the control view which links the two previous views. We use Hibernate as an ORM (Object Relational Mapping) framework with a PostgreSQL database and Spring as a framework to handle transactions.  相似文献   

11.
A new integrated technique for fast and accurate measurement of the quasi-optics,especially for the microwave/millimeter wave diagnostic systems of fusion plasma,has been developed.Using the LabVIEW-based comprehensive scanning system,we can realize not only automatic but also fast and accurate measurement,which will help to eliminate the effects of temperature drift and standing wave/multi-reflection.With the Matlab-based asymmetric two-dimensional Gaussian fitting method,all the desired parameters of the microwave beam can be obtained.This technique can be used in the design and testing of microwave diagnostic systems such as reflectometers and the electron cyclotron emission imaging diagnostic systems of the Experimental Advanced Superconducting Tokamak.  相似文献   

12.
The ITER Equatorial Port 1 will host the following diagnostic systems: the Radial Neutron Camera (RNC), the High Resolution Neutron Spectrometer (HRNS), the Gamma Ray Spectrometer, the Hard X-Rays Monitor, the Pressure Gauges, the Bolometers, the Equatorial Visible/Infrared Wide Angle Viewing System (WAVS), the Neutron Flux Monitor (NFM), the Motional Stark Effect (MSE) system and the Divertor Impurity Monitor (DIM). These diagnostics are integrated inside the Port Plug, a water-cooled stainless steel support structure, which also includes Diagnostic Shielding Modules, designed to provide enough radiation shielding capabilities, to protect the diagnostic systems and to reduce the dose level in the Port Interspace. A new concept for the design of the Port Plug is under consideration: it is based on the installation of the diagnostics inside vertical drawers, completely independent from each other, that are inserted in the Port Plug structure through guiding rails.The paper presents the results of three-dimensional neutronic analyses performed with MCNP5 Monte Carlo code in support of the Port Plug design and integration. The reference ITER MCNP 40° model “Alite” has been updated including the details of the drawers and three diagnostics. Nuclear heating radial profiles have been produced for different toroidal and poloidal positions to be used as input for thermal and thermo-mechanical analyses. 3-D Neutron flux maps have been calculated in order to assess the effect of radiation streaming through all gaps (between the drawers, around the Port Plug and along the diagnostic penetrations) and to provide an estimate of the shielding effectiveness of the new Port Plug concept.  相似文献   

13.
This paper describes the applications software systems for computer control and monitoring of diagnostic hardware, and for data acquisition and analysis of the TFTR (Tokamak Fusion Test Reactor) Charge Exchange diagnostics. The TFTR Charge Exchange diagnostics are comprised of two autonomous systems, each consisting of up to six independent analyzer modules viewing the plasma at different angles and toroidal locations. Each system will have the capability of acquiring up to 2.5 megabytes of raw data for each shot. Users will have the capability of controlling all analyzers, and analyzing hydrogen mass species for up to ten analysis pulse time regions for multiple plasma shots. These features make the Charge Exchange systems among the largest diagnostic applications software systems on TFTR.  相似文献   

14.
The ITER remote handling (RH) system has been divided into 7 major equipment system procurements that deliver complete systems (operator interfaces, equipment controllers, and equipment) according to task oriented functional specifications. Each equipment system itself is an assembly of transporters, power manipulators, telemanipulators, vehicular systems, cameras, and tooling with a need for controllers and operator interfaces.From an operational perspective, the ITER RH systems are bound together by common control rooms, operations team, and maintenance team; and will need to achieve, to a varying degree, synchronization of operations, co-operation on tasks, hand-over of components, and sharing of data and resources. The separately procured RH systems must, therefore, be integrated to form a unified RH system for operation from the RH control rooms.The RH system will contain a heterogeneous mix of specially developed RH systems and off-the-shelf RH equipment and parts. The ITER Organization approach is to define a control system architecture that supports interoperable heterogeneous modules, and to specify a standard set of modules for each system to implement within this architecture. Compatibility with standard parts for selected modules is required to limit the complexity for operations and maintenance. A key requirement for integrating the control system modules is interoperability, and no module should have dependencies on the implementation details of other modules.The RH system is one of the ITER Plant systems that are integrated and coordinated through the hierarchical structure of the ITER CODAC system. It is distinguished from other Plant systems by the man-in-the-loop nature of RH operations and the need for control rooms at a level below the main control room. The RH control system architecture has been designed to also support the central monitoring and coordination of the RH activities.  相似文献   

15.
Fault-tolerant real-time computer (FT-RTC) systems are widely used to perform safe operation of nuclear power plants (NPP) and safe shutdown in the event of any untoward situation. Design requirements for such systems need high reliability, availability, computational ability for measurement via sensors, control action via actuators, data communication and human interface via keyboard or display. All these attributes of FT-RTC systems are required to be implemented using best known methods such as redundant system design using diversified bus architecture to avoid common cause failure, fail-safe design to avoid unsafe failure and diagnostic features to validate system operation. In this context, the system designer must select efficient as well as highly reliable diversified bus architecture in order to realize fault-tolerant system design. This paper presents a comparative study between CompactPCI bus and Versa Module Eurocard (VME) bus architecture for designing FT-RTC systems with switch over logic system (SOLS) for NPP.  相似文献   

16.
10 MW高温气冷堆(HTR-10)的分散控制系统(DCS)执行对HTR-10的运行监测和控制功能.原DCS在设备可靠性、历史数据存储和转换等方面存在不足.根据HTR-10各工艺系统及控制对象的要求,分析了DCS的系统架构、功能和性能指标等;对I/O通道进行配置;提出以施耐德Quantum 67160系列产品为主要模件的多重冗余硬件平台以及分别以UNITY和iFIX作为系统软件平台和组态工具的配置方案;采用PTO模块完成对棒控和装卸料系统控制,使用智能仪表对交流采样方案进行改进,在通信网络中加设逻辑网关的办法实现第三方通信功能.该设计方案可有效解决HTR-10原DCS存在的问题,满足HTR-10对DCS的要求.  相似文献   

17.
The ITER Plasma Control System (PCS) requires an extensive set of about 50 diagnostic systems to measure the plasma response and about 20 actuators to act on the plasma to carry out its control functions. The specifications and real limitations of the actuators and diagnostics are being assessed as part of the ongoing conceptual design of the PCS to understand the potential impact on plasma control. The actuators include magnetic coils (central solenoid (CS), poloidal field (PF), vertical stability (VS), edge localized mode (ELM), correction coils (CC)), heating and current drive (electron cyclotron (EC), ion cyclotron (IC), neutral beam injection (NBI), and possibly lower hybrid (LH)), glow discharge cleaning, fueling and impurity gas and pellet injection, vacuum pumping, and disruption mitigation systems. Diagnostic systems are prioritized according to their role in machine protection (MP), basic control (BC), advanced control (AC), and physics studies (PS). At the conceptual design phase, detailed control algorithms do not yet need to be specified, but conceptual solutions must be chosen that satisfy the PCS requirements for control within the real constraints of the diagnostics and actuators. The feasibility of the chosen solutions must be proven either through established control schemes on existing machines or through an R&D program to develop them before they will be required on ITER. The diagnostic and actuator requirements of the PCS will evolve from first plasma through the high performance DT phase. A comparison is made of the expected requirements to control vertical stability, sawteeth, neoclassical tearing modes (NTMs), edge localized modes (ELMs), error fields, resistive wall modes (RWMs), Alfvén eigenmodes, and disruptions with the ITER baseline actuator and diagnostic specifications.  相似文献   

18.
EAST Cryogenic Supervisory and Control System Based on Delta-V DCS   总被引:3,自引:0,他引:3  
The control system for the Experimental Advanced Superconductive Tokamak (EAST) cryogenic system is designed and constructed based on Delta-V DCS (Distribution Control System), which consists of engineering workstations, operator workstations, application workstations, redundant controller units, input/output (I/O) cards and a redundant control network. Our task is to design a supervisory and control system to provide the operator interface for control and monitoring, sending alarms, archiving of selected signals, and other routines to analyze realtime and historic data. The hardware configuration, software structure and control algorithms are illustrated in detail in this paper. Hvpothetic oroblems and further research are also mentioned.  相似文献   

19.
This paper describes the timing system designed to control the operation time-sequence and to generate clocks for various sub-systems on J-TEXT tokamak. The J-TEXT timing system is organized as a distributed system which is connected by a tree-structured optical fiber network. It can generate delayed triggers and gate signals (0 μs–4000 s), while providing reference clocks for other sub-systems. Besides, it provides event handling and timestamping functions. It is integrated into the J-TEXT Control, Data Access and Communication (J-TEXT CODAC) system, and it can be monitored and configured by Experimental Physics and Industrial Control System (EPICS). The configuration of this system including tree-structured network is managed in XML files by dedicated management software. This system has already been deployed on J-TEXT tokamak and it is serving J-TEXT in daily experiments.  相似文献   

20.
《等离子体科学和技术》2019,21(10):105602-82
Magnetic measurement and diagnostics are critical for the operation of magnetic confinement experimental facilities and plasma analysis,while differential signals are mostly detected by a detector.For this,we have developed and designed a stable and reliable data integration system for HL-2 M magnetic measurement and magnetic diagnostics.The system will be used for realtime control of HL-2 M after the construction of HL-2 M is completed.The system is built based on the PXI platform,and the software system is based on the LABVIEW platform.Key technologies realized by the system primarily include drift compensation,pulse data acquisition technology,multi-threading processing technology and transmission control communication protocol.Trials of the system were successfully carried out on HL-2 A,and the results showed that the system could fully meet the construction needs of HL-2 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号