首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
JT-60SA is a superconducting tokamak to be assembled and operated at the JAEA laboratories in Naka (Japan). The tokamak is designed, manufactured and operated under the funding of the Broader Approach Agreement (between the government of Japan and the European Commission) and of the Japan Fusion National Programme; JT-60SA aims to prepare, support and complement the ITER experimental programme. The European contribution to the JT-60SA is, for a large fraction, procured by France, Germany, Italy, Spain and Belgium.This paper summarizes the activities carried out at F4E to develop a user-friendly software tool able to assess in real-time if an operational scenario could be structurally withstood by the magnet system of JT-60SA. Such tool is based on a theoretical formulation which is supported by a series of dedicated finite element method (FEM) calculations, and is able to provide a comparative assessment of any candidate scenario with respect to the baseline scenarios, and a quantitative assessment of all electro magnetic (EM) forces acting on the magnet system at any time during the candidate scenario. The tool as it is presented is specifically designed to be used for the JT-60SA tokamak, though it is designed so to that its usage could be extended easily to any other tokamak.  相似文献   

2.
Present status of the JT-60SA (JT-60 Super Advanced) project, implemented jointly by Europe and Japan since 2007, is described. The design of the main tokamak components was completed in late 2008, and all the scientific missions are preserved to contribute to ITER and DEMO reactors. The construction of the JT-60SA has begun with procurement activities for the superconducting magnet systems, vacuum vessel, in-vessel components and other components under the relevant procurement arrangements between the implementing agencies of JAEA (Japan Atomic Energy Agency) in Japan and Fusion for Energy in Europe. Designs and developments of the auxiliary heating systems for JT-60SA have been progressing at JAEA so as to provide the total injection power of 41 MW for 100 s.  相似文献   

3.
《Fusion Engineering and Design》2014,89(9-10):2128-2135
The JT-60SA experiment is one of the three projects to be undertaken in Japan as part of the Broader Approach Agreement, conducted jointly by Europe and Japan, and complementing the construction of ITER in Europe. The JT-60SA device is a fully superconducting tokamak capable of confining break-even equivalent deuterium plasmas with equilibria covering high plasma shaping with a low aspect ratio at a maximum plasma current of Ip = 5.5 MA. This makes JT-60SA capable to support and complement ITER in all the major areas of fusion plasma development necessary to decide DEMO reactor construction. After a complex start-up phase due to the necessity to carry out a re-baselining effort with the purpose to fit in the original budget while aiming to retain the machine mission, performance, and experimental flexibility, in 2009 detailed design could start. With the majority of time-critical industrial contracts in place, in 2012, it was possible to establish a credible time plan, and now, the project is progressing on schedule towards the first plasma in March 2019. After careful and focused R&D and qualification tests, the procurement of the major components and plant is now well advanced in manufacturing design and/or fabrication. In the meantime the disassembly of the JT-60U machine has been completed and the engineering of the JT-60SA assembly process has been developed. The actual assembly of JT-60SA started in January 2013 with the installation of the cryostat base. The paper gives an overview of the present status of the engineering design, manufacturing and assembly of the JT-60SA machine.  相似文献   

4.
JT-60SA is a superconducting tokamak to be assembled and operated at the JAEA laboratories in Naka (Japan) [1]. The tokamak has been designed to prepare, support and complement the ITER experimental programme and will be manufactured and operated under the funding of the Broader Approach Agreement (between the government of Japan and the European Commission) and of the Japan Fusion National Programme. Within the European contribution to JT-60SA, Spain has to provide the cryostat. Due to functional purposes, the cryostat has been divided in two large assemblies: the Cryostat Base (CB) and the Cryostat Vessel Body the latter subdivided into Cryostat Vessel Body Cylindrical Section (CVBCS) and the Top Lid. Spain is committed to provide the design and subsequent manufacturing of the CB and CVBCS (excluding the Top Lid) through the National Laboratory of Fusion at Ciemat. The design of both components has been concluded and the CB is currently being manufactured by a Spanish company, IDESA. This paper aims to present the status of the manufacturing and pre-assembly at the factory of the CB that has to be delivered in November 2012.  相似文献   

5.
In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy (“Fusion for Energy”, F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature.The project is presently in the detailed design phase.  相似文献   

6.
Recent results of JT-60U towards establishment of physics basis for ITER and advanced tokamak operation are presented.Progress in high integrated performance is achieved with improvement of N-NB and ECRF heating systems.In the next experimental campaign 2003-2004,discharge duration with 17 MW heating will be extended up to 30s for sustaining high-beta plasma longer than the current diffusion time.Superconducting modification of JT-60 is planned to demonstrate high-beta plasma sustainment exceeding ideal MHD instability limit without wall stabilization.  相似文献   

7.
The assembly scenarios and assembly tools of the major tokamak components for JT-60SA are studied in the following. (1) The assembly frame (with a dedicated 30-tonne crane), which is located around the JT-60SA tokamak, is adopted for effective assembly works in the torus hall and the temporary support of the components during assembly. (2) Metrology for precise positioning of the components is also studied by defining the metrology points on the components. (3) The sector segmentation for weld joints and positioning of the vacuum vessel (VV), the assembly scenario and tools for VV thermal shield (TS), the connection of the outer intercoil structure (OIS) and the installation of the final toroidal field coil (TFC) are studied, as typical examples of the assembly scenarios and tools for JT-60SA.  相似文献   

8.
The JT-60SA experiment is one of the three projects to be undertaken in Japan as part of the Broader Approach Agreement, conducted jointly by Europe and Japan, and complementing the construction of ITER in Europe. It is a fully superconducting tokamak capable of confining break-even equivalent deuterium plasmas with equilibria covering high plasma shaping with a low aspect ratio at a maximum plasma current of Ip = 5.5 MA. In late 2007 the BA Parties, prompted by cost concerns, asked the JT-60SA Team to carry out a re-baselining effort with the purpose to fit in the original budget while aiming to retain the machine mission, performance, and experimental flexibility. Subsequently the Integrated Project Team has undertaken a machine re-optimization followed by engineering design activities aimed to reduce costs while maintaining the machine radius and plasma current. This effort led the Parties to the approval of the new design in late 2008 and hence final design and procurement activities have commenced. The paper will describe the process leading to the re-baselining, the resulting final design and technical solutions and the present status of procurement activities.  相似文献   

9.
JT-60 is planned to be upgraded to JT-60SA tokamak machine with fully superconducting coils, which is a project of the JA-EU satellite tokamak program under both Broader Approach program and Japanese domestic program. The JT-60SA vacuum vessel (VV) has a D-shape poloidal cross section and a toroidal configuration with 10° facet segmented in toroidal direction. The material of the VV is 316L stainless steel with low cobalt content of <0.05 wt%. A double wall structure is adopted for the VV to ensure high rigidity and high toroidal one-turn resistance simultaneously.Fundamental welding R&D and a trial manufacturing of the 20° upper half of the VV have been performed to study the manufacturing procedure. After the confirmation of the quality of the mock-up, manufacturing of the actual VV started in November 2009.  相似文献   

10.
We have developed a new data acquisition (DAQ) system with fast sampling rate for fluctuation measurements in a long pulse JT-60U tokamak plasma. This system is based on a powerful digital oscilloscope, which has a large acquisition memory up to 50 Mwords/ch, 1 MHz sampling rate and 16 bits high resolution AD convertors. The system is composed of plural digital oscilloscopes and mass storages. On this system, most of data acquisition processes are executed at each digital oscilloscope. This feature of the system leads to an advantage that the processing loads are distributed among the digital oscilloscopes. This system has been successfully employed for measurements of various fluctuations obtained through magnetic probes, beam emission spectroscopy and so on. The size of the acquired data using this system has reached up to 10 GB/shot so far. It has demonstrated that this system is very powerful for data acquisition of multi-channeled signals with high time resolution in a long pulse plasma.  相似文献   

11.
JT-60SA is a fully superconducting coil tokamak upgraded from the JT-60U. This paper focused on the integrity of the top lid of cryostat in JT-60SA. The design requirement for the cryostat in normal operations is to achieve vacuum insulation of 10 3 Pa, and the top flange of the top lid is lightly welded onto its body flange. The weld is tensile-loaded by bending deformation of the top lid due to vacuum pressure of external 0.1 MPa. This weld integrity is evaluated with tensile-load reduction, which results in clamp reinforcement. The structural integrity of the top lid is validated.  相似文献   

12.
13.
In the framework of the JT-60SA project, France and Italy will provide to JAEA 18 Toroidal Field (TF) coils including NbTi cable-in-conduit conductors. During the tokamak operation, these coils could experience a quench, an incidental event corresponding to the irreversible transition from superconducting state to normal resistive state. Starting from a localized disturbance, the normal zone propagates along the conductor and dissipates a large energy due to Joule heating, which can cause irreversible damages.The detection has to be fast enough (a few seconds) to trigger the current discharge, so as to dump the stored magnetic energy into an external resistor. The JT-60SA primary quench detection system will be based on voltage measurements, which are the most rapid technology. The features of the detection system must be adjusted so as to detect the most probable quenches, while avoiding inopportune fast safety discharges. This requires a reliable simulation of the early quench propagation, performed in this study with the Gandalf code.The conductor temperature reached during the current discharge must be kept under a maximal value, according to the hot spot criterion. In the present study, a hot spot criterion temperature of 150 K was taken into account and the role of each conductor component (strands, helium and conduit) was analyzed. The detection parameters were then investigated for different hypotheses regarding the quench initiation.  相似文献   

14.
The JT-60 is planned to be modified to a full-superconducting tokamak referred to as the JT-60 Super Advanced (JT-60SA). The maximum temperature of the magnet during its quench might reach the temperature of higher than several hundreds Kelvin that will damage the superconducting magnet itself. The high precision quench detection system, therefore, is one of the key technologies in the superconducting magnet protection system.The pick-up coil method, which is using voltage taps to detect the normal voltage, is used for the quench detection of the JT-60SA superconducting magnet system. The disk-shaped pick-up coils are inserted in the central solenoid (CS) module to compensate the inductive voltage. In the previous study, the quench detection system requires a large number of pick-up coils. The reliability of quench detection system would be higher by simplifying the detection system such as reducing the number of pick-up coils. Simplifying the quench detection system is also important to reduce the total cost of the protection system. Hence the design method is improved by increasing optimizing parameters. The improved design method can reduce the number of pick-up coils without reducing the sensitivity of detection; consequently the protection system can be designed with higher reliability and lower cost. The applicability of the disk-shaped pick-up coil for quench detection system is evaluated by the two dimensional analysis. In the previous study, however, the analysis model only took into account the CS, EF (equilibrium field) coils and plasma. Therefore, applicability of the disk-shaped pick-up coil for the quench detection system remains open question because the fast plasma events, such as disruption, mini collapse and ELM (edge localized mode), directly influences on the voltage of pick-up coil making the quench signal undetectable. Consequently, a new analysis model proposed in the present paper was designed to avoid this difficulty by introducing the passive coil series such as vacuum vessel and stabilizer. The influence of fast plasma events is absorbed by passive coil series like real system, and the evaluation of applicability can be examined in detail. The analysis results show that the disk-shaped pick-up coil is applicable whenever the standard operation, disruption, mini collapse and ELM.  相似文献   

15.
《Fusion Engineering and Design》2014,89(7-8):1024-1028
Carbon fiber composite (CFC) monoblock divertor target is required for power handling in JT-60SA. Quality of the targets depends on a joining technology in manufacturing process. To inspect the quality of more than 900 target pieces, efficient non-destructive inspection is needed. An infrared thermography inspection (IR inspection), has been proposed by ITER and IRFM, where the quality between CFC and a cooling tube is examined by a use of transient thermal response at a rapid switch from hot to cold water flow. In JT-60SA divertor target, a screw tube will be employed to obtain high heat transfer efficiency with simple structure. Since the time response of the screw tube is much faster than that of smooth tube, it is required to confirm the feasibility of this IR inspection. Thus, the effect of joining defects on transient thermal response of the targets has been investigated experimentally by using the mock-up targets containing defects which are artificially made. It was found that the IR inspection can detect the defects. Moreover, screening criteria of IR inspection for acceptable monoblock target is discussed.  相似文献   

16.
The Broader Approach activities aim at complementing the ITER project and at an acceleration of fusion energy in the framework of collaboration between Japan and EURATOM. Three research projects are to be undertaken: (1) Satellite Tokamak Programme, (2) Engineering Validation and Engineering Design Activities for the International Fusion Materials Irradiation Facility (IFMIF/EVEDA), and (3) International Fusion Energy Research Centre (IFERC). While the Satellite Tokamak Programme is to be conducted at the site of the existing JT-60 tokamak, the other two projects are to be undertaken at a new research site in Rokkasho, Japan.  相似文献   

17.
The mission of the JT-60SA Tokamak, to be built in Japan, is to contribute to the early realization of fusion energy by its exploitation in support of the ITER program. JT-60SA project is an important part of the “broader approach” activity as a satellite program for ITER. The toroidal field (TF) coils are a European “in kind” contribution and they will partly be built by France. JT-60SA TF coil uses the Cable In Conduit Conductor (CICC) with NbTi superconductor strands. TF conductors will have to operate at 5.7 T, 5 K and at current density of 450 A/mm2 with sufficient margins. In the framework of JT-60SA TF coil manufacture, the variable temperature characterization is an important step to select NbTi strand. At an early stage of design, we had to choose the strand with acceptable performances. During the design qualification and validation stage, it is important to qualify strands in conditions close to the operation conditions. The industry has proposed various strands manufactured with different processes. This work and publication examines a strand with an internal CuNi barrier, which is expected to lead to better current distribution between strands, by more precise calibration and control of the inter-strand resistance. The strands were tested at the Grenoble High Magnetic Field Laboratory facility. The domain (B, T, J) explored was in the range of 4.5–11 T for the magnetic field intensity, 4.2–6.5 K for the temperature and between 40 A/mm2 and 1200 A/mm2 for the current density. For each strand, “critical current density” and “current sharing temperature” measurements have been carried out, with a temperature precision of few tens of mK. Once the measurements performed, the fitting parameters (of type JC = f(B, T)) of each strand have been found, by performing regression analysis. This work will lead to select the strand with the best characteristics. In this paper, we present the results of this measurement task, the data and regression analysis (fits, Tcs, etc.) and the conclusion about the strand choice.  相似文献   

18.
JT-60SA is a superconducting tokamak machine to be assembled in Naka site, Japan, designed to contribute to the early realization of fusion energy by supporting the exploitation of ITER and research toward DEMO.In the frame of the Broader Approach Agreement a contract between ENEA and Walter Tosto (Chieti, Italy) started on July 2012 for the construction of 18 TF coil casings for JT-60SA. Two different sets of 9 casings each will be progressively delivered, from 2013 to the end of 2015, to ASG Superconductors (Genoa, Italy) and to Alstom (Belfort, France), where the integration of the winding pack into the casing will be carried out.Each TF coil casing (height 7.5 m and width 4.5 m) consists of four main components: one “Straight Leg Outboard” and one “Curved Leg Outboard” both with their own covers, “Straight Leg Inboard” and “Curved Leg Inboard”. The casing components are segmented in forgings and plates made of FM316LNL. The straight leg outboard is composed of two wings welded to a central core and two elbows welded at the ends with a cooling channel installed inside. Elbows of straight leg outboard are segmented in two half-elbows machined from 1 rough forging and welded to the central core made by plate. Welding of wings to the central core is performed in EBW (electron beam welding) and the straight part is welded to the elbows by NGTIG (TIG narrow gap) process. The curved leg outboard is composed of two wings welded to a central core for a final shape of “D”. Other supports are welded by TIG or Electrode process.This paper describes the technical design solutions, the manufacturing methods defined and the particular processes adopted, such as welding (EB, TIG), non-destructive examinations (NDE), vibration stress relief (VSR) and laser tracker survey, most of which have been validated by the construction of two different sets of full scale mock-ups representing the straight and the curved legs.  相似文献   

19.
《Fusion Engineering and Design》2014,89(9-10):2018-2023
Disassembly of the JT-60U torus was started in 2009 after 18 years of D2 operations and was completed in October 2012 for assembling the JT-60SA torus at the same position. The JT-60U torus was featured by the complicated and welded structure against the strong electromagnetic force, and by the radioactivation due to deuterium–deuterium (D–D) reactions. Since this work is the first experience of disassembling a large radioactivated fusion device in Japan, careful preparations of disassembly activities, including treatment of the radioactivated materials and safety work, have been made. During the disassembly period over 3 years, careful measures against exposure were taken and stringent control of exposure dose were implemented, and as a result, accumulated collective effective dose of ∼41,000 person-day to workers was only ∼22 mSv in total and no internal exposure was observed. About 13,000 components cut into pieces with measuring the contact dose were removed from the torus hall and stored safely in storage facilities. The total weight of the disassembly components reached up to ∼5400 tonnes. Most of the disassembly components will be treated as non-radioactive ones after the clearance level inspection under the Japanese regulations in the future. The assembly of JT-60SA has started in January 2013 after this disassembly of JT-60U torus.  相似文献   

20.
This paper describes the approved detailed design of the four Switching Network Units (SNUs) of the superconducting Central Solenoid of JT-60SA, the satellite tokamak that will be built in Naka, Japan, in the framework of the “Broader Approach” cooperation agreement between Europe and Japan.The SNUs can interrupt a current of 20 kA DC in less than 1 ms in order to produce a voltage of 5 kV. Such performance is obtained by inserting an electronic static circuit breaker in parallel to an electromechanical contactor and by matching and coordinating their operations. Any undesired transient overvoltage is limited by an advanced snubber circuit optimized for this application. The SNU resistance values can be adapted to the specific operation scenario. In particular, after successful plasma breakdown, the SNU resistance can be reduced by a making switch.The design choices of the main SNU elements are justified by showing and discussing the performed calculations and simulations. In most cases, the developed design is expected to exceed the performances required by the JT-60SA project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号