首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Surface Science Station (S3) on the Alcator C-Mod tokamak is used to study and optimize the location and rate of boron film deposition in situ during electron cyclotron (EC) discharge plasmas using 2.45 GHz radio-frequency (RF) heating and a mixture of helium and diborane (B2D6) gasses. The radial profile of boron deposition is measured with a pair of quartz microbalances (QMB) on S3, the faces of which can be rotated 360° including orientations parallel and perpendicular to the toroidal magnetic field BT ~0.1 T. The plasma electron density is measured with a Langmuir probe, also on S3 in the vicinity of the QMBs, and typical values are ~1 × 1016 m?3. A maximum boron deposition rate of 0.82 μg/cm2/min is obtained, which corresponds to 3.5 nm/min if the film density is that of solid boron. These deposition rates are sufficient for boron film applications between tokamak discharges. However the deposition does not peak at the EC resonance as previously assumed. Rather, deposition peaks near the upper hybrid (UH) resonance, ~5 cm outboard of the EC resonance. This has implications for RF absorption, with the RF waves being no longer damped on the electrons at the EC resonance. The previously inferred radial locations of critical erosion zones in Alcator C-Mod also need to be re-evaluated. The boron deposition profile versus major radius follows the ion flux/density profile, implying that the boron deposition is primarily ionic. The application of a vertical magnetic field (BV ~0.01 T) was found to narrow the plasma density and boron deposition profiles near the UH resonance, thus better localizing the deposition. A Monte Carlo simulation is developed to model the boron deposition on the different QMB/tokamak surfaces. The model requires a relatively high boron ion gyroradius of ~5 mm, indicating a B+1 ion temperature of ~2 eV, to match the deposition on QMB surfaces with different orientation to BT. Additionally, the boron ion trajectories become de-magnetized at high neutral gas throughput (~0.5 Pa m3 s?1) and pressure (~2 Pa) when the largest absolute deposition rates are measured, resulting in deposition patterns, which are independent of surface orientation to BT in optimized conditions.  相似文献   

2.
The Vulcan conceptual design (R = 1.2 m, a = 0.3 m, B0 = 7 T), a compact, steady-state tokamak for plasma–material interaction (PMI) science, must incorporate a vacuum vessel capable of operating at 1000 K in order to replicate the temperature-dependent physical chemistry that will govern PMI in a reactor. In addition, the Vulcan divertor must be capable of handling steady-state heat fluxes up to 10 MW m?2 so that integrated materials testing can be performed under reactor-relevant conditions. A conceptual design scoping study has been performed to assess the challenges involved in achieving such a configuration. The Vulcan vacuum system comprises an inner, primary vacuum vessel that is thermally and mechanically isolated from the outer, secondary vacuum vessel by a 10 cm vacuum gap. The thermal isolation minimizes heat conduction between the high-temperature helium-cooled primary vessel and the water-cooled secondary vessel. The mechanical isolation allows for thermal expansion and enables vertical removal of the primary vessel for maintenance or replacement. Access to the primary vessel for diagnostics, lower hybrid waveguides, and helium coolant is achieved through ~1 m long intra-vessel pipes to minimize temperature gradients and is shown to be commensurate with the available port space in Vulcan. The isolated primary vacuum vessel is shown to be mechanically feasible and robust to plasma disruptions with analytic calculations and finite element analyses. Heat removal in the first wall and divertor, coupled with the ability to perform in situ maintenance and replacement of divertor components for scientific purposes, is achieved by combining existing helium-cooled techniques with innovative mechanical attachments of plasma facing components, either in plate-type helium-cooled modules or independently bolted, helium-jet impingement-cooled tiles. The vacuum vessel and first wall design enables a wide range of potential PFC materials and configurations to be tested with relative ease, providing a new approach to reactor-relevant PMI science.  相似文献   

3.
The HL-2A tokamak will be modified into HL-2M. The Bt at the plasma center (major radius R = 1.78 m) is 2.2 T, the minor radius is 0.65 m. The plasma current IP of HL-2M will reach up to 2.5 MA, the elongation and triangularity is more than 1.8 and more than 0.5, respectively. The vacuum vessel torus consists of 20 sectors with “D” shaped cross-section and double wall structure. 20 toroidal field coil bundles comprise 140 turns which are designed with demountable joints, the poloidal field coils system consists of 25 coils. The engineering design and calculation for field coil system, vacuum vessel, support structure, etc. are finished, many key issues for manufacture process have been discussed with industry and the fabrication of main components of HL-2M tokamak will be carried out in factories.  相似文献   

4.
DIII-D is planning to implement off-axis neutral beam current drive by neutral beam injection through a midplane port at angles up to 15° from horizontal. To accommodate the beam-line tilting, the following modifications are planned: (1) move the beam line away from the tokamak by 0.39 m to allow for a 0.68 m inside diameter welded bellows of necessary length to provide 15° of vertical motion between the vessel port and the beam line; (2) reduce the vertical height of the injected beam from 0.48 m to 0.43 m to provide clearance for the inclined beam as it passes through the length of the vessel port; (3) add a linkage system between the front of the beam line and the tokamak to restrain the NB against the vacuum loading from the bellows while maintaining zero roll about the axis of the beam line as it is moved about a virtual pivot axis; (4) add a forward and two rear vertical actuators for raising and lowering the beam line (These actuators require coordinated position control to rotate the NB about a virtual pivot axis.); (5) incorporate lateral restraint to comply with seismic requirements.  相似文献   

5.
Actively cooled tungsten plasma facing components will be used in the ITER divertor. In order to fully validate such a technology (industrial manufacturing, operation with long plasma duration), the implementation of a tungsten axis symmetric divertor in the tokamak Tore-Supra is studied. With this major upgrade, so called WEST (Tungsten Environment in Steady state), Tore-Supra will be the only European tokamak able to address the problematic of long plasma discharges with an actively cooled metallic divertor.To do so, it is planned to install two symmetric divertor coils inside the vacuum vessel. This assembly, called divertor structure, is made up of two stainless steel casings containing a copper winding pack cooled by hot pressurized water (200 °C, 4 MPa). These two casings are located at the top and bottom of the vacuum vessel in order to create two magnetic X-point areas, which are protected by W-PFCs (Tungsten Plasma Facing Components) in order to extract the thermal loads. The two casing are robustly maintained together by 18 brackets in order to constitute a rigid assembly attached thanks to 12 legs (one per lower vertical port) outside the Tore_Supra vacuum vessel.The paper will illustrate the technical developments performed during 2011 in order to produce a preliminary design of the Tore-Supra WEST divertor structure with a particular focus on: the mechanical design of this major component and its integration in the Tokamak, the manufacturing issues and the technical results of the feasibility studies done with industry as well as the design of a scale one coil mock up.  相似文献   

6.
The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. At the heart of the tokamak is the vacuum vessel and limiter which collectively are referred to as the vacuum vessel system. As one of the key components for the device, the vacuum vessel can provide ultra-high vacuum and clean environment for the plasma operation. The VV systems need upper and lower vertical ports, horizontal ports and oblique ports for diagnostics, vacuum pumping, gas puffing, and maintenance accesses. A limiter is a solid surface which defines the edge of the plasma and designed to protect the wall from the plasma, localizes the plasma–surface interaction and localizes the particle recycling. Basic structure analyses were confirmed by FEM model for dead weight, vacuum pressure and plasma disruptions loads. Stresses at general part of the VV body are lower than the structure material allowable stress (117 MPa) and this analysis show that the maximum stresses occur near the gravity support, and is about 98 MPa.  相似文献   

7.
Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. CEA has developed a multipurpose carrier able to realize deployments in the plasma vessel without breaking the Ultra High Vacuum (UHV) and temperature conditioning. A 6 years R&D programme was jointly conducted by CEA-LIST Interactive Robotics Unit and the Institute for Magnetic Fusion Research (IRFM) in order to demonstrate the feasibility and reliability of an in-vessel inspection robot relevant to ITER requirements.The Articulated Inspection Arm robot (AIA) is an 8-m long multilink carrier with a payload up to 10 kg operable between plasma under tokamak conditioning environment; its geometry allows a complete close inspection of Plasma Facing Components (PFCs) of the Tore Supra vessel.Different tools are being developed by CEA to be plugged at the front head of the carrier. The diagnostic presently in operation consists in a viewing system offering accurate visual inspection of PFCs. Leak detection of first wall based on helium sniffing and laser compact system for carbon co-deposited layers characterizations or treatments are also considered for demonstration.In April 2008, the AIA robot equipped with its vision diagnostic has realized a complete deployment into Tore Supra and the first closed inspection of the vessel under UHV conditions. During the upcoming experimental campaign, the same operation will be performed under relevant conditions (10?6 Pa and 120 °C) after a conditioning phase at 200 °C to avoid outgassing pollution of the chamber.This paper describes the different steps of the project development, robot capabilities with the present operations conducted on Tore Supra and future requirements for making the robot a tool for tokamak routine operation.  相似文献   

8.
The HL-2 M tokamak is now under construction in Southwestern Institute of Physics in China. As one of the main auxiliary heating systems for HL-2 M tokamak, a new NBI beam line with 5 MW NBI power, 42° injection angle, based on 4 sets of 80 kV/45 A/5 s bucket ion sources with geometrical beam focus, is conceptually designed with geometrical calculation and engineering simulations. The preliminary structure and layout of key components including ion sources, neutralizers, ion dumps, deflection magnet, beam edge scraper, long pulse calorimeter target, short pulse calorimeter target, injection port and beam drift duct are determined. The magnetic shielding of the stray field of HL-2 M tokamak is analyzed. Beam power transmission efficiency is calculated with geometrical algorithm. The ratio of neutral beam injection power to ion beam power is as high as 48%.  相似文献   

9.
The operation of W7-X stellarator for pulse length up to 30 min with 10 MW input power requires a full set of actively water-cooled plasma facing components. From the lower thermally loaded area of the wall protection system designed for an averaged load of 100 kW/m2 to the higher loaded area of the divertor up to 10 MW/m2, various design and technological solutions have been developed meeting the high load requirements and coping with the restricted available space and the particular 3D-shaped geometry of the plasma vessel. 80 ports are dedicated alone to the water-cooling of plasma facing components and a complex networking of kilometers of pipework will be installed in the plasma vessel to connect all components to the cooling system. An advanced technology was developed in collaboration with industry for the target elements of the high heat flux (HHF) divertor, the so-called “bi-layer” technology for the bonding of flat tiles made from CFC NB31 onto the CuCrZr cooling structure. The design, R&D and the adopted technological solutions of plasma facing components are presented. At present, except the HHF divertor, most of plasma facing components has been already manufactured.  相似文献   

10.
Recent developments have made it possible to consider high-temperature superconductor (HTS) for the design of tokamak toroidal field (TF) magnet systems, potentially influencing the overall design and maintenance scheme of magnetic fusion energy devices. Initial assessments of the engineering challenges and cryogenic-dependent cost and parameters of a demountable, HTS TF magnet system have been carried out using the Vulcan tokamak conceptual design (R = 1.2 m, a = 0.3 m, B0 = 7 T) as a baseline. Jointed at the midplane to allow vertical removal of the primary vacuum vessel and routine maintenance of core components, structural D-shaped steel support cases provide cryogenic cooling for internally routed YBCO superconducting cables. The cables are constructed by layering ~50 μm thick commercially available YBCO tape, and the interlocking steel support cases self align during assembly to form internal resistive joints between YBCO cables. It is found that designing the TF magnet system for operation between 10 K and 20 K minimizes the total capital and operating cost. Since YBCO is radiation-sensitive, Monte Carlo simulation is used to study advanced shielding materials compatible with the small size of Vulcan. An adequate shield is determined to be 10 cm of zirconium borohydride, which reduces the nuclear heating of the TF coils by a factor of 11.5 and increases the YBCO tape lifetime from two calendar years in the unshielded case to 42 calendar years in the shielded case. Although this initial study presents a plausible conceptual design, future engineering work will be required to develop realistic design solutions for the TF joints, support structure, and cryogenic system.  相似文献   

11.
The concept of a steady state tokamak with plasma facing components (PFC) on the basis of liquid lithium circulation demands the decision of three tasks: lithium injection to the plasma, lithium ions collection before their deposition on the vacuum vessel and lithium returning to the injection zone. Main subject of paper is the investigations of Li collection by different types of limiters intersected the scrape-of-layer (SOL) in T-10 and T-11M tokamaks. For finding solution for this problem in T-11M and T-10, experiments have been applied with Li-, C-rail limiters and ring SS R-limiter-collector (T-11M). The efficiency of Li collection by limiters in T-11M and T-10 tokamaks was investigated by post mortem sample–witness analysis and (T-11M) by the use of the mobile graphite probe (limiter) as a recombination target in the stream of lithium ions. The characteristic depth of lithium penetration in the SOL area of T-11M is about 2 cm and 4 cm in SOL of T-10. The quantitative analysis of the sample–witnesses located on T-11M limiters showed that 60 ± 20% of the lithium injected during plasma operating of T-11M had been collected by limiters. It confirms an opportunity of the lithium ions collection by limiters in tokamak SOL.  相似文献   

12.
The neutral beam injection (NBI-1) system has been designed for providing a 300 s deuterium beam of 120 kV/65 A as an auxiliary heating and current drive system of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak. The deuterium beam is produced from a long pulse ion source composed of a bucket-type plasma generator and a multi-aperture tetrode accelerator with the help of discharge power supplies and high voltage (HV) power supplies. The beamline components (BLCs) include a neutralizer with an optical multi-channel analyzer (OMA) section, a bending magnet (BM), an ion dump assembly, a movable calorimeter, beam scrapers, and a cryo-sorption pump system in a rectangular vacuum tank. A beam duct equipped with bellows and a voltage break is placed between the NBI vacuum tank and the KSTAR vacuum vessel. All data and parameters of the NBI system are controlled by a control and data acquisition (CODAQ) system through the EPICS based Ethernet interface.  相似文献   

13.
In order to fully validate actively cooled tungsten plasma facing components (industrial fabrication, operation with long plasma duration), the implementation of a tungsten axisymmetric divertor structure in the tokamak Tore-Supra is studied. With this major upgrade, so-called WEST (Tungsten Environment in Steady state Tokamak), Tore-Supra will be able to address the problematic of long plasma discharges with a metallic divertor target.To do so, it is planned to install two symmetric divertor coils inside the vacuum vessel. This assembly, called divertor structure, is made up of two stainless steel casings containing a copper winding pack cooled by a pressurized hot water circuit (up to 180 °C, 4 MPa) and is designed to perform steady state plasma operation (up to 1000 s).The divertor structure will be a complex assembly ring of 4 m diameter representing a total weight of around 20 tons. The technical challenge of this component will be the implementation of angular sectors inside the vacuum vessel environment (TIG welding of the coil casing, induction brazing and electrical insulation of the copper winding). Moreover, this complex assembly must sustain harsh environmental conditions in terms of ultra high vacuum conditions, electromagnetical loads and electrical isolation (13 kV ground voltage) under high temperature.In order to fully validate the assembly and the performance of this complex component, the production of a scale one dummy coil is in progress.The paper will illustrate, the technical developments performed in order to finalize the design for the call for tender for fabrication. The progress and the first results of the simplified dummy coils will be also addressed.  相似文献   

14.
The design of the ITER electron cyclotron launchers recently reached the preliminary design level - the last major milestone before design finalization. The ITER ECH system contains 24 installed gyrotrons providing a maximum ECH injected power of 20 MW through transmission lines towards the tokamak. There are two EC launcher types both using a front steering mirror; one equatorial launcher (EL) for plasma heating and four upper launchers (UL) for plasma mode stabilization (neoclassical tearing modes and the sawtooth instability). A wide steering angle range of the ULs allows focusing of the beam on magnetic islands which are expected on the rational magnetic flux surfaces q = 1 (sawtooth instability), q = 3/2 and q = 2 (NTMs).In this paper the preliminary design of the ITER ECH UL is presented, including the optical system and the structural components. Highlights of the design include the torus CVD-diamond windows, the frictionless, front steering mechanism and the plasma facing blanket shield module (BSM). Numerical simulations as well as prototype tests are used to verify the design  相似文献   

15.
In modern fusion reactors, the erosion of plasma facing surface results in layers deposition on tokamak “cold” surfaces. To provide efficient operation of tokamaks, it is essential to characterise the deposited layer with high tritium content. In situ rapid surface characterisation without reactor components disassembly is required. Active laser pyrometry together with a repetition rate Nd–YAG laser (1 Hz–1 kHz repetition rate frequency) applied for surface heating can be used to characterise some thermo-physical properties (thermal capacity, thermal contact, and conductivity) of a micrometric layer. The pyrometer system was developed and applied to characterise some properties of a W-layer (140 μm) on a CFC-substrate. The numerical code developed for 3-D simulation of LH of a surface with the deposited layer was applied to simulate the experimental heating temperatures. The experimental and simulation results were compared. W-layer characterisation was performed by fitting the experimental and theoretical heating temperatures.  相似文献   

16.
A baking system for the Korea Superconducting Tokamak Advanced Research (KSTAR) plasma facing components (PFCs) is designed and operated to achieve vacuum pressure below 5 × 10?7 mbar in vacuum vessel with removing impurities. The purpose of this research is to prevent the fracture of PFC because of thermal stress during baking the PFC, and to accomplish stable operation of the baking system with the minimum life cycle cost. The uniformity of PFC temperature in each sector was investigated, when the supply gas temperature was varied by 5 °C per hour using a heater and the three-way valve at the outlet of a compressor. The alternative of the pipe expansion owing to hot gas and the cage configuration of the three-way valve were also studied. During the fourth campaign of the KSTAR in 2011, nitrogen gas temperature rose up to 300 °C, PFC temperature reached at 250 °C, the temperature difference among PFCs was maintained at below 8.3 °C, and vacuum pressure of up to 7.24 × 10?8 mbar was achieved inside the vacuum vessel.  相似文献   

17.
FAST (Fusion Advanced Studies Torus) is a proposal for a Satellite Facility which can contribute the rapid exploitation of ITER and prepare ITER and DEMO regimes of operation, as well as exploit innovative plasma facing component systems for DEMO. FAST is a compact (Ro = 1.82 m, a = 0.64 m, triangularity δ = 0.4) and cost effective machine able to investigate, with integration capability, non linear dynamics effects of alpha particle behaviour in burning plasmas. FAST operates in high performance H-mode (BT up to 8.5 T; IP up to 8 MA), as well as in advanced tokamak mode (IP = 3 MA), and in full non inductive current mode (IP = 2 MA). Helium gas at 30 K is used for cooling the resistive copper magnets. This allows for a pulse duration up to 170 s at 3 MA/3.5 T. The vacuum vessel (VV), segmented into 20-degree modules, is capable to accommodate a 40 MW RF power system. The machine has been designed to house a 10 MW Negative Neutral Beam Injection (NNBI) system. Tungsten (W) or liquid lithium (L-Li) have been chosen as the divertor plate materials, and argon or neon as the impurities to be injected for mitigating the thermal loads.  相似文献   

18.
The plasma vessel of the fusion experiment Wendelstein 7-X (W7-X) is a plasma vessel covering a plasma volume of about 30 m3. The vacuum conditions for plasma experiments inside the plasma vessel are supposed to be in a range of 1 × 10−8 mbar (ultra high vacuum conditions) after evacuation and conditioning. The 254 ports of the plasma vessel allow an external access to the inner space of the plasma vessel. Ports for heating and diagnostic systems are equipped with gate valves or with shutters. The vacuum gate valves are used as a controllable mechanical and a vacuum disconnection point between diagnostics and heating systems on the port side and the inner plasma vessel on the other side. The shutters are responsible for an optical and thermal protection for port windows or installed equipments inside the ports. After an overview of the main requirements for the control of the huge number of gate valves and shutters for the operational phases 1 and 2 of W7-X the design and realization of a centralized control system for controlling and observing all shutters and the majority of gate valves of the machine Wendelstein 7-X will be introduced and discussed.  相似文献   

19.
The conceptual design of the purpose-built assembly tools required for ITER tokamak assembly is given. The ITER machine assembly is sub-divided into five major activities: lower cryostat, sector sub-assembly, sector assembly, ex-vessel, and in-vessel [1]. The core components, vacuum vessel (VV) and toroidal field coil (TFC), are assembled from nine 40° sub-assemblies, each comprising a 40° VV sector, two TFCs, and the associated VV thermal shield (VVTS). The lower cryostat activities must be completed prior to sector assembly in pit to prepare the foundations for the core components, and to locate the lower components to be trapped once the core components installation begins. In-vessel and ex-vessel activities follow completion of sector assembly. To perform these assembly activities requires both massive, purpose-built tools, and standard heavy handling and support tools. The tools have the capability of supporting and adjusting the largest of the ITER components; with maximum linear dimension 19 m and mass 1200 tonne, with a precision in the low mm range. Conceptual designs for these tools have been elaborated with the collaboration of the Korean Domestic Agency (KO DA). The structural analysis was performed as well using ANSYS code.  相似文献   

20.
The paper describes a new benchmark, performed as a preliminary experiment on JET tokamak during the last shutdown. Dose rate has been measured with different dosimeters along the axis of the main horizontal port of Octant 1, from the plasma centre to 1 m outside the port at various times after shutdown. The activation dose from the horizontal neutron camera, moved outside the torus hall during the shutdown, has also been assessed. The measured values have been compared with dose rates calculated using an Advanced-D1S method in which new computation capabilities have been introduced, such as dose rate spatial mesh map and automated time behaviour.Measurements along the axis of the horizontal port are well predicted by the calculation. With few exceptions, the D1S estimation is within the error of the measurements. The activation of the horizontal camera is underestimated by a factor of 2. However, more accurate measurements are needed to reduce the uncertainties.The Advanced-D1S method, the results and implications of the benchmark are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号