共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Seungyon Cho Mu-Young Ahn Dong Won Lee Yi-Hyun Park Eo Hwak Lee Jae Sung Yoon Tae Kyu Kim Cheol Woo Lee Young-Hoon Yoon Suk Kwon Kim Hyung Gon Jin Kyu In Shin Yang Il Jung Yong Hwan Jeong Yong Ouk Lee Duck Young Ku Chang-Shuk Kim Soon Chang Park Kijung Jung 《Fusion Engineering and Design》2013,88(6-8):621-625
Korea plans to install and test Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) in the ITER, because the HCCR blanket concept is one of options of the DEMO blanket. Currently, many design and R&D activities have been performed to develop the Korean HCCR TBM. An integrated design tool for a fusion breeder blanket has been developed based on nuclear technologies including a safety analysis for obtaining a license for testing in the ITER. A half-scale sub-module mockup of the first wall with the manifold was fabricated, and the manufacturability and thermo-hydraulic performances were evaluated. High heat load and helium cooling test facilities have been constructed. Next, the recent status of TBM material development in Korea was introduced including Reduced Activation Ferritic Martensitic (RAFM) steel, lithium ceramic pebbles and silicon carbide (SiC) coated graphite pebbles. Several fabrication methods of RAFM steel, lithium ceramic pebbles, and silicon carbide coating on graphite pebbles were investigated. Recent design and R&D progress on these areas are introduced here. 相似文献
4.
《Fusion Engineering and Design》2014,89(7-8):1289-1293
Korea has decided to test Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) in ITER and design of the TBM with its ancillary systems, i.e. Test Blanket System (TBS), is under progress. Since the TBM is operated at elevated temperature with high heat load, safety consideration is essential in design procedure. In this paper, preliminary accident analysis results for the current HCCR TBS design on selected scenarios are presented as an important part of safety assessments. To simulate transient thermo-hydraulic behavior, GAMMA-FR code which has been developed in Korea for fusion applications was used. The main cooling and tritium extraction circuit systems, as well as the TBM, were simulated and the main components in the TBS were modeled as the associated heat structures. The important accident scenarios were produced and summarized in the paper considering the HCCR TBS design and ITER conditions, which cover in-vessel Loss Of Coolant Accident (LOCA), in-box LOCA, ex-vessel LOCA, Loss Of Flow Accident (LOFA), Loss Of Heat Sink Accident (LOHSA) and purge pipe rupture case. The accident analysis based on the selected scenarios was performed and it was found that the current design of the HCCR TBS meets the thermo-hydraulic safety requirements. 相似文献
5.
《Fusion Engineering and Design》2014,89(7-8):1177-1180
Korea has developed a Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) and its auxiliary system in ITER. In parallel with its design, safety analysis has performed including accident analysis with the selected reference accidents. Among them, the effect of in-box LOCA to the structural integrity of the TBM was investigated. From the transient analysis of the GAMMA-FR on the in-box LOCA, it is found that the pressure of the internal TBM can be increased up to 8 MPa with the same pressure of the operating coolant through the Tritium Extraction System (TES) and He purge lines in the TBM. Structural analysis with ANSYS code for TBM was performed with this condition and it is confirmed that the TBM can endure and it does not affect the ITER machine by the failure. 相似文献
6.
7.
M.N. Sviridenko V.K. Kapyshev V.G. Kovalenko S.A. Makarov A.Yu. Leshukov A.V. Razmerov Yu.S. Strebkov 《Fusion Engineering and Design》2009,84(1):9-14
The development of manufacturing technology for the ceramic helium-cooled test blanket module (CHC TBM) is performed in the framework of the concept for RF Federal government program to master the fusion nuclear energy and as a part of the development of DEMO blanket technology.The main technical approach to the development of CHC TBM manufacturing technology is to provide the “combined” analogy with design decisions of DEMO blanket structural elements.The manufacturing technology of CHC TBM structural elements (first wall cramp, load-bearing back cramp, tritium-breeding element and attachment system) has been proposed during the period of 2004-2007. The design details of TBM structural elements and critical issues of manufacturing technology development are also presented in this paper. 相似文献
8.
《Fusion Engineering and Design》2014,89(7-8):1137-1143
Korea plans to test a Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) in ITER. The HCCR TBM adopts a four sub-module concept considering the fabricability and the transfer of irradiated TBM for post irradiation examination. Each sub-module has seven-layer breeding zone, including three neutron multiplier layers packed with beryllium pebbles, three lithium ceramic pebble bed packed tritium breeder layers, and a reflector layer packed with graphite pebbles. Based on this configuration, neutronic and electromagnetic calculations were performed and their results were applied for the conceptual design of HCCR TBM that considers manufacturing feasibility. Also, a design and safety analysis of HCCR Test Blanket System (TBS) was performed using integrated design tools modifying nuclear system codes for helium coolant and tritium behavior evaluation. The Advanced Reduced Activation Alloy (ARAA) is being developed as a structural material. A total of 73 candidate ARAA alloys were designed and their out-of-pile performance was evaluated. The graphite pebbles as the neutron reflector were fabricated by using mechanical machining and grounding method with the surface coated with SiC. The hydrogen permeation characteristics of structural materials were evaluated using the Hydrogen PERmeation (HYPER) facility. The recent design and R&D progress on these areas are addressed in this paper. 相似文献
9.
《Fusion Engineering and Design》2014,89(7-8):1341-1345
This work aims to give an outline of the design requirements of the helium cooled pebble bed (HCPB) blanket and its associated R&D activities. In DEMO fusion reactor the plasma facing components have to fulfill several requirements dictated by safety and process sustainability criteria. In particular the blanket of a fusion reactor shall transfer the heat load coming from the plasma to the cooling system and also provide tritium breeding for the fuel cycle of the machine. KIT has been investigating and developed a helium-cooled blanket for more than three decades: the concept is based on the adoption of separated small lithium orthosilicate (tritium breeder) and beryllium (neutron multiplier) pebble beds, i.e. the HCPB blanket. One of the test blanket modules of ITER will be a HCPB type, aiming to demonstrate the soundness of the concept for the exploitation in future fusion power plants. A discussion is reported also on the development of the design criteria for the blanket to meet the requirements, such as tritium environmental release, also with reference to the TBM.The selection of materials and components to be used in a unique environment as the Tokamak of a fusion reactor requires dedicated several R&D activities. For instance, the performance of the coolant and the tritium self-sufficiency are key elements for the realization of the HCPB concept. Experimental campaigns have been conducted to select the materials to be used inside the solid breeder blanket and R&D activities have been carried out to support the design. The paper discusses also the program of future developments for the realization of the HCPB concept, also focusing to the specific campaigns necessary to qualify the TBM for its implementation in the ITER machine. 相似文献
10.
11.
Kyu In Shin Dong Won Lee Eo Hwak Lee Suk-Kwon Kim Jae Sung Yoon Seungyon Cho 《Fusion Engineering and Design》2013,88(9-10):1866-1871
Korea has developed a Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) testing in ITER, which was considered one of the fusion DEMO-relevant blankets in Korea. The design and performance analysis of the TBM body have been carried out considering the uniqueness of the KO TBM and design requirements by the IO and KO design concept: (1) KO TBM has 4 sub-modules considering a post irradiation test (PIE) and its delivery. (2) A first wall (FW) design was changed into a 15 × 11 rectangular shape and its performance was confirmed by thermal-hydraulic and thermo-mechanical analyses using commercial ANSYS code. The results showed that the revised design model satisfied 1.5Sm and 3Sm of the allowable stress (Sm) in the RCC-MR code at the maximum stress region of the components for mechanical and thermo-mechanical analyses, respectively. (3) Considering the tritium breeding and cooling, a breeding zone (BZ) design was investigated. Three Li and Be layers, and one graphite layer, were proposed by the iteration, and the appropriate temperature distribution was obtained. The design for other components such as a side wall (SW) and back manifold (BM) is on-going considering 9 MPa of channel pressure and its functions of flow distribution as a manifold. 相似文献
12.
聚变中子源驱动的次临界清洁核能系统─聚变能技术的早期应用途径 总被引:4,自引:0,他引:4
提出作为聚变能技术早期应用途径的聚变中子源驱动的清洁核能系统概念,并从国家的能源需求、国内外核电发展状况论述开发这种系统的必要性和意义,根据国内外聚变驱动器技术及次临界包层技术进展和国内多年的可行性研究结果,说明开发这种系统的现实性和基础。文中也给出了建议的发展进程。 相似文献
13.
《Fusion Engineering and Design》2014,89(7-8):890-895
The internal components of ITER are one of the most design and technically challenging components of the ITER machine, and include the Blanket System and the Divertor. The Blanket System successfully went through its Final Design Review in April 2013 and now it is entering into the procurement phase. The design and qualification of the Divertor with a full-tungsten armour was successfully completed and this enabled the decision in November 2013 to start operation with this material option. This paper summarizes the engineering design, the R&D, the technology qualification and procurement status of the Blanket System and of the Divertor of the ITER machine. 相似文献
14.
提出作为聚变能技术早期应用途径的聚变中子源驱动的清洁核能系统概念,并从国家的能源需求、国内外核电发展状况论述开发这种系统的必要性和意义,根据国内外聚变驱动器技术及次临界包层技术进展和国内多年的可行性研究结果,说明开发这种系统的现实性和基础。文中也给出了建议的发展进程。 相似文献
15.
《Fusion Engineering and Design》2014,89(7-8):1386-1391
The water cooled lithium lead (WCLL) blanket, based on near-future technology requiring small extrapolation from present-day knowledge both on physical and technological aspect, is one of the breeding blanket concepts considered as possible candidates for the EU DEMOnstration power plant.In 2012, the EFDA agency issued new specifications for DEMO: this paper describes the work performed to adapt the WCLL blanket design to those specifications.Relatively small modules with straight surfaces are attached to a common Back Supporting Structure housing feeding pipes. Each module features reduced activation ferritic-martensitic steel as structural material, liquid Lithium-Lead as breeder, neutron multiplier and carrier. Water at typical Pressurized Water Reactors (PWR) conditions is chosen as coolant.A preliminary design of the equatorial outboard module has been achieved. Finite elements analyses have been carried out in order to assess the module thermal behavior. Two First Wall (FW) concepts have been proposed, one favoring the thermal efficiency, the other favoring the manufacturability. The Breeding Zone has been designed with C-shaped Double-Walled Tubes in order to minimize the Water/Pb-15.7Li interaction likelihood.The priorities for further development of the WCLL blanket concept are identified in the paper. 相似文献
16.
《Fusion Engineering and Design》2014,89(9-10):1954-1958
In ITER, the blanket modules (BM) are arranged around the plasma to provide thermal and nuclear shielding for the vacuum vessel (VV), magnets, and other components. As a part of the BM design process, nuclear analysis is required to determine the level of nuclear heating, helium production, and radiation damage in the BM. Additionally, nuclear heating in the VV is also important for assessing the BM design. We used the CAD based DAG-MCNP5 transport code to analyze detailed models inserted into a 40-degree partially homogenized ITER global model. The regions analyzed include BM01, the neutral beam injection (NB) region, and the upper port region. For BM01, the results show that He production meets the limit necessary for re-welding, and the VV heating behind BM01 is acceptable. For the NBI region, the VV nuclear heating behind the NB region exceeds the design limit by a factor of two. For the upper port region, the nuclear heating of the VV exceeds the design limit by up to 20%. The results presented in this work are being used to modify the BM design in the cases where limits are exceeded. 相似文献
17.
《Fusion Engineering and Design》2014,89(9-10):2257-2261
The ITER Tokamak Cooling Water System (TCWS) provides coolant for blankets and divertor. The blanket system consists of 440 blanket modules (BMs). The blanket manifold consists of a system of seamless pipes arranged in bundles and routed in poloidal direction from the upper ports of the Vacuum Vessel (VV) to the bottom of the machine. In each of the 18 upper ports there are 20 inlet and 20 outlet pipes, which split at the port exit in two directions, supplying cooling water to either the inboard or the outboard blanket modules. The manifold is routed between the VV and BMs. Branch pipes provide the connection between the manifold and the blanket cooling circuits through a coaxial connector welded to the shield block. A complex, sequential installation sequence has been developed in order to enable the assembly. Once installed the manifold is considered a semi-permanent component, but since failure would prevent ITER operation a maintenance strategy has been planned. 相似文献
18.
《Fusion Engineering and Design》2014,89(9-10):1979-1983
This work is devoted to nuclear design analyses of the new HCPB-type DEMO reactor developed in the frame of the EFDA PPPT program. The neutronic simulations were carried out with the MCNP5 code using a full scale 3D torus sector model of the DEMO reactor. The model was generated with the McCad conversion tool from available CAD models using a consistent integral approach. The neutronic analyses addressed the tritium breeding performance, the nuclear power generation and the shielding capabilities of the reactor. Although tritium self-sufficiency was shown, the tritium breeding performance of the current design calls for further design improvements to arrive at a higher uncertainty margin. The shielding performance of the reactor is close to the limit. Sufficient shielding can be easily provided by a slight increase of the inboard shield thickness. 相似文献
19.
《Fusion Engineering and Design》2014,89(2):94-98
Two simplified models were developed for the cooling design of ITER shield block. Moreover, a new model, circular cylinder centered in a square solid, was also adopted to estimate the temperature, where the effects of heat transfer coefficient and volumetric heat rate were separated and studied individually. After that, the impact of dimension on the heat transfer in the new model was studied by a series of numerical analyses. At the last part, a numerical steady-state thermal analysis of a typical full shield block (SB) was performed to verify these models. Comparisons of the results from numerical analysis with these models show that the difference is acceptable in the practical application. The methods can be used not only for the cooling design, but also to know about the heat transfer in the SB. 相似文献