首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadmium oxide powder codoped with Cu and Co ions (Cd0.94Cu0.01Co0.05O) was synthesised by thermal co-decomposition of a mixture of cadmium acetate dihydrate, bis(acetylacetonato)copper(II) and bis(acetylacetonato)cobalt(II) complexes. The purpose of the present investigation is to study the effect of H2-annealing conditions on the evolution of structure, optical and magnetic properties by varying temperature (300, 350 and 400 °C) and duration time (30 and 60 min). X-ray fluorescence (XRF) and X-ray diffraction (XRD) methods confirm the purity and the formation of single nanocrystalline phase of the as-prepared powder; thus, both Cu and Co ions were incorporated into CdO lattice, forming solid solutions. Magnetic measurements reveal that the as-prepared solid solution (SS) gained paramagnetic (PM) properties, although pure CdO itself is considered as diamagnetic (DM). The measured effective magnetic moment of doped Co2+ was 3.55 μ B. Interestingly, it was found that the hydrogenation process could transform the properties of the SS into room-temperature ferromagnetic (RT-FM) only. For example, the coercivity (H c), remanence (M r) and saturation magnetisation (M s) were 279 Oe, 0.187 emu/g and 1.739 emu/g, respectively for SS annealed in H2 gas at 350 °C for 30 min. Thus, the possibility of producing CdO with RT-FM was proved, where the magnetic characteristics were tailored by doping and post treatment under H2 gas, thereby a new potential candidate to be used as a dilute magnetic semiconductor (DMS). However, the real effect of H2 annealing on such drastic transformation in the magnetic behaviour needs some in-depth theoretical research work.  相似文献   

2.
Cadmium oxide (CdO) nanopowders doped with Cu/Fe were synthesised by co-decomposition of method of complexes to examine that Cu ion doping behaves as a “magneto-catalyst”, which enhances the magnetic properties of 1 wt.% Fe-doped CdO. Furthermore, the effect of annealing in air, vacuum and hydrogen atmosphere was also investigated. The analysis confirms the formation of single CdO phase for as-prepared and vacuum-annealed compositions, whereas Cd metal appeared after annealing in H2. An enhancement of the saturation magnetisation by the presence of Cu ions was obtained, 2.93 and 5.50 memu/g, for CdO:Fe and CdO:Cu:Fe, respectively. It was found that annealing in H2 resulted in tremendous increase of Ms, reaching very high values of 837 and 594 memu/g for H-treated compared to as-prepared CdO-Fe and CdO-Cu-Fe, respectively.  相似文献   

3.
Fe-doped ZnO powder has been synthesized by coprecipitation method under different synthesized temperature, using zinc nitrate as the staring material, urea as the precipitator, and ferric nitrate as the doping source, respectively. The prepared powders have been characterized by XRD and SEM. Results show that when the synthesized temperature is below 700 °C the prepared powders are ZnO(Fe) solid solution powders and the ZnFe2O4 impurity phase appeared for the Fe-doped ZnO powder synthesized at 700 °C. The electric permittivities in the frequency range of 8.2–12.4 GHz and average infrared emissivity at the waveband range of 8–14 μm of prepared powders have been determined. The real part and imaginary part of electric permittivities of prepared powders have increased firstly and then decreased with increasing synthesized temperature. The average infrared emissivity has presented the opposite changing trend.  相似文献   

4.
CdO doped (doping concentration 0, 1, 3 and 16 wt%) ZnO nanostructured thin films are grown on quartz substrate by pulsed laser deposition and the films are annealed at temperature 500 °C. The structural, morphological and optical properties of the annealed films are systematically studied using grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), Micro-Raman spectra, UV–vis spectroscopy, photoluminescence spectra and open aperture z-scan. 1 wt% CdO doped ZnO films are annealed at different temperatures viz., 300, 400, 500, 600, 700 and 800 °C and the structural and optical properties of these films are also investigated. The XRD patterns suggest a hexagonal wurtzite structure for the films. The crystallite size, lattice constants, stress and lattice strain in the films are calculated. The presence of high-frequency E2 mode and the longitudinal optical A1 (LO) modes in the Raman spectra confirms the hexagonal wurtzite structure for the films. The presence of CdO in the doped films is confirmed from the EDX spectrum. SEM and AFM micrographs show that the films are uniform and the crystallites are in the nano-dimension. AFM picture suggests a porous network structure for 3% CdO doped film. The porosity and refractive indices of the films are calculated from the transmittance and reflectance spectra. Optical band gap energy is found to decrease in the CdO doped films as the CdO doping concentration increases. The PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. The 16CdZnO film shows an intense deep green PL emission. Non-linear optical measurements using the z-scan technique indicate that the saturable absorption (SA) behavior exhibited by undoped ZnO under green light excitation (532 nm) can be changed to reverse saturable absorption (RSA) with CdO doping. From numerical simulations the saturation intensity (Is) and the effective two-photon absorption coefficient (β) are calculated for the undoped and CdO doped ZnO films.  相似文献   

5.
Abstract Tungsten oxide (WO3) nanoparticles doped with different amounts of manganese ions (W1?x Mn x O3, where x =?0.011, 0.022 and 0.044) were synthesised by hydraulic acid-assisted precipitation, followed by thermal calcinations. The powders were characterised by X-ray fluorescence (XRF), X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and magnetic measurements. The monoclinic structure at room temperature (~293 K) found for un-doped WO3 was preserved even with Mn doping. However, doping with Mn ions caused decease in unit-cell volume and slight increase in crystallite size (CS) of host WO3. The hydrogenation was observed to corrode the crystallites without changing in crystalline structure. Controllable room-temperature ferromagnetic (RT-FM) properties were obviously observed with hydrogenated WO3 doped with Mn. In addition, there existed an optimum doping concentration of Mn in WO3 to obtain superior FM properties. Therefore, Mn-doped WO3 nanopowders, owning to these amazingly tunable magnetic properties, could be considered a potential candidate for many applications partially required FM properties such as optical phosphors and catalysts.  相似文献   

6.
A series of Zn1–x Fe x O (x = 0, 1, 2, 3, 4 %) powders via a two-step sol–gel method in open system were successfully fabricated. Influence of Fe doping concentration on the structure, morphology, optical properties and photo catalysis properties were investigated by means of X-ray diffraction, scanning electron microscopy, UV–Vis spectrophotometer and photochemical reaction instrument. The results showed that the ZnO powders were hexagonal wurtzite structures and their crystalline sizes and particle diameters decreased with the increase of Fe doping concentration. An increase of visible light absorption value and a decrease in band gap from 3.219 to 3.167 eV were found with the increase of Fe doping concentration, which enable the sample harvest more photons to excite the electron from the valence. Enhanced visible light induced photocatalytic activity has been found in Fe doped ZnO and the ultraviolet light induced photocatalytic properties of the Fe-doped ZnO have been improved greatly compared with undoped ZnO and commercially available TiO2 (P25). The photocatalytic activities were not significantly affected by the particle size, and the best Fe doping concentration is 1 %.  相似文献   

7.
Jianwei Wang 《Materials Letters》2010,64(21):2373-23676
A facile polyol process was established to prepare superparamagnetic Fe-doped ZnO nanoparticles in a liquid polyol using Fe(acac)3 and Zn(acac)2 as precursors and triethylene glycol as the solvent. Scanning electron microscopy (SEM) images showed that as-prepared nanoparticles are uniform in size. X-ray diffraction (XRD) analysis revealed that the nanoparticles are of wurtzite structure without an impure phase. The successful doping of the Fe element into the ZnO host was evident by XRD lines shifting and energy dispersive X-ray spectroscopy (EDS) results. Magnetization measurements demonstrated that the Fe-doped ZnO nanoparticles were superparamagnetic at room temperature.  相似文献   

8.
Structural and optical properties of Cd x Zn1?x O (x = 0.0, 0.025, 0.050, 0.075, 0.1) nanopowder, synthesized by co-precipitation method have been investigated. The effect of annealing on the structural and morphological properties was studied using X-ray diffraction. The samples with x = 0.0 up to 0.075 exhibit wurtzite hexagonal phase, whereas, the sample with x = 0.1 shows two phases: wurtzite hexagonal ZnO and cubic CdO phase. This behavior is explained on the basis of solubility of CdO in ZnO. Energy Dispersive X-ray analysis (EDX) results revealed the existence of Cd, Zn, and O elements in the nanopowder. Transmission Electron Microscopy (TEM) images confirm that the particle size of the prepared samples is in nano range. The optical band gap values obtained from the absorption spectra show that absorption depends on Cd composition. By doping of ZnO with CdO, a red shift in the absorption edge was observed.  相似文献   

9.
In this work, nano-sized ZnO particles were prepared by a direct precipitation method with Zn(NO3)2·6H2O and NH3·H2O as raw materials, and the impact of the synthesis process was studied. The optimal thermal calcined temperature of precursor precipitates of ZnO was obtained from the differential thermal analysis (DTA) and the thermal gravimetric analysis (TGA) curves. The purity, microstructure, morphology of the calcined ZnO powders were studied by X-ray diffraction (XRD), energy dispersive X-ray spectrum (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized ZnO powders had a wurtzite structure with high purity. The final products were of flower-like shape and the nanorods which consisted of the flower-like ZnO bunches were 20–100 nm in diameter and 0.5–1 μm in length. The effect of process conditions on the morphology of ZnO was discussed.  相似文献   

10.
We report here the structural and electrical properties of Zn0.95M0.05O ceramic varistors, M = Zn, Ni and Fe. The samples were tested for phase purity and structural morphology by using X-Ray diffraction XRD and scanning electron microscope SEM techniques. The current-voltage characteristics J-E were obtained by dc electrical measurements in the temperature range of 300–500 K. Addition of doping did not influence the hexagonal wurtzite structure of ZnO ceramics. Furthermore, the lattice parameters ratio c/a for hexagonal distortion and the length of the bond parallel to the c axis, u were nearly unaffected. The average grain size was decreased from 1.57 μm for ZnO to 1.19 μm for Ni sample and to 1.22 μm for Fe sample. The breakdown field EB was decreased as the temperature increased, in the following order: Fe > Zn > Ni. The nonlinear region was clearly observed for all samples as the temperature increased up to 400 K and completely disappeared with further increase of temperature up to 500 K. The values of nonlinear coefficient, a were between 1.16 and 42 for all samples, in the following order: Fe > Zn > Ni. Moreover, the electrical conductivity s was gradually increased as the temperature increased up to 500 K, in the following order: Ni > Zn > Fe. On the other hand, the activation energies were 0.194 eV, 0.136 and 0.223 eV for all samples, in the following order: Fe, Zn and Ni. These results have been discussed in terms of valence states, magnetic moment and thermo-ionic emission, which were produced by the doping, and controlling the potential barrier of ZnO.  相似文献   

11.
Fe-doped and Fe-Ga co-doped ZnO diluted magnetic semiconductor thin films on quartz substrate were studied. Rapid annealing enhanced the ferromagnetism (FM) of the films grown in Ar/O2. All the films grown in Ar are n-type and the carrier concentration could increase significantly when Ga is doped. The state of Fe in the films was investigated exhibiting Fe3+. Magnetic measurements revealed that room temperature ferromagnetism in the films were doping concentration dependent and would enhance slightly with Ga doping. The origin of the observed FM is interpreted by the overlapping of polarons mediated through oxygen vacancy based on the bound magnetic polaron model.  相似文献   

12.
White and fluffy Al-doped zinc oxide powders were fabricated using ZnO and Al(C3H7O)3 powders by a solid state method. The effects of Al doping on microstructure, electrical and optical properties were systematically studied. XRD and Raman results show that the Al-doped powders have a pure hexagonal wurtzite structure. The resistivity of ZnO could be decreased from 108 to 102 Ω?cm with the Al doped concentration of 3?at.%. Meanwhile, the obtained powders exhibited high diffuse reflectance in visible region, intense UV emission without deep level emission and good environmental stability. Results reveal that the optical property of the powders has an intimate relationship with the electrical property. The decline of the diffuse reflectance at visible wavelengths and the strong IR absorption were due to the increase of the free electron concentration. Al doping leads to quenching of defect related visible band emission, and we surmise that the defect centers are mainly related to oxygen vacancies (V O ) and zinc vacancies (V Zn ). Al doping mechanism was also tentatively explored.  相似文献   

13.
Cu/ZnO in nanosizes have been synthesized using ethylene glycol at various conditions. The effects of reaction temperature, extent of reduction, various precursors such as CuX2·nH2O, ZnX2·nH2O (X = Cl, NO3, CH3CO2), the addition of water and the removal of volatile compounds including water were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and dynamic light scattering (DLS). Cu/ZnO powders with an average diameter of as low as 50 nm was obtained with a very low polydispersity in the absence of a protective polymer. Ethylene glycol oxidation products were also identified by Fourier transform infrared (FTIR) spectroscopy. The morphology of Cu/ZnO powders and the yield of powders are found to be strongly dependent on the synthesis conditions.  相似文献   

14.
Electrical and gas sensing properties of nanocrystalline ZnO:Cu, having Cu X wt% (X = 0.0, 0.5, 1.0, and 1.5) in ZnO, in the form of pellet were investigated. Copper chloride and zinc acetate were used as precursors along with oxalic acid as a precipitating reagent in methanol. Material characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and inductive coupled plasma with optical emission spectrometry (ICP-OES). FE-SEM showed the self-aligned Cu-doped ZnO nano-clusters with particles in the range of 40-45 nm. The doping of 0.5% of copper changes the electrical conductivity by an order of magnitude whereas the temperature coefficient of resistance (TCR) reduces with increase in copper wt% in ZnO. The material has shown an excellent sensitivity for the H2, LPG and CO gases with limited temperature selectivity through the optimized operating temperature of 130, 190 and 220 °C for H2, LPG and CO gases, respectively at 625 ppm gas concentration. The %SF was observed to be 1460 for H2 at 1% Cu doping whereas the 0.5% Cu doping offered %SF of 950 and 520 for CO and LPG, respectively. The response and recovery time was found to be 6 to 8 s and 16 s, respectively.  相似文献   

15.
We report the observation of room temperature ferromagnetism (FM) in Cu-doped ZnO (ZnO: Cu) thin films synthesized by sol–gel technique. While donor Al3+ cations are introduced into the ZnO: Cu films, the saturation magnetization decreases rapidly. Cu 2p core-level X-ray photoelectronic spectra demonstrate that the FM is strongly correlated with Cu2+ cations (3d 9 configuration). To further study the relationship between the FM and acceptors, Na+ cations are also introduced into the ZnO: Cu films to increase the saturation magnetization. The enhanced FM in the (Cu, Na)-codoped ZnO is suggested to be due to the hybridization between delocalized holes and spin-split Cu 3d states.  相似文献   

16.
Cu-doped ZnO nanoparticles were synthesized by a simple chemical method at low temperature with Cu:Zn atomic ratio from 0 to 5 %. The synthesis process was based on the hydrolysis of zinc acetate dehydrate and copper acetate tetrahydrate heated under reflux to 65 °C using methanol as a solvent. X-ray diffraction (XRD) analysis reveals that the Cu-doped ZnO crystallize in a wurtzite structure with a change of crystal size from 12 nm for undoped ZnO to 5 nm for Cu-doped ZnO. These nano size crystallites of Cu doped ZnO self-organized into microspheres. The XRD patterns, Scanning electron microscopy and transmission electron microscopy micrographs of doping of Cu in ZnO confirmed the formation of microspheres and indicated that the Cu2+ is successfully substituted into the ZnO host structure of the Zn2+ site. Cu doping shifts the absorption onset to blue from 373 to 350 nm, indicating an increase in the band gap from 3.33 to 3.55 eV. A relative increase in the intensity of the deep trap emission of Cu-doped ZnO is observed when increasing the concentration of Cu. Magnetic measurements indicate that Cu-doped ZnO samples are ferromagnetic at room temperature except pure ZnO.  相似文献   

17.
Sol-gel method was successfully used for synthesis of ZnO nanoparticles doped with 10 % Mg or Cu. The structure, morphology and optical properties of the prepared nanoparticles were studied as a function of doping content. The synthesized ZnO:(Mg/Cu) samples were characterized using XRD, TEM, FTIR and UV-Vis spectroscopy techniques. The samples show hexagonal wurtzite structure, and the phase segregation takes place for Cu doping. Optical studies revealed that Mg doping increases the energy band gap while Cu incorporation results in decrease of the band gap. The antibacterial activities of the nanoparticles were tested against Escherichia coli (Gram negative bacteria) cultures. It was found that both pure and doped ZnO nanosuspensions show good antibacterial activity which increases with copper doping, and slightly decreases with adding Mg.  相似文献   

18.
Surfactant free ZnO and Cu doped ZnO nanorods were synthesized by hydrothermal method. The formation of ZnO:Cu nanorods were confirmed by scanning electron microscopy, X-ray diffraction and Raman analysis. Diffuse reflectance spectroscopy results shows that band gap of ZnO nanorods shifts to red with increase of Cu content. The orange-red photoluminescent emission from ZnO nanorods originates from the oxygen vacancy or ZnO interstitial related defects. ZnO:Cu nanorods showed strong ferromagnetic behavior, however at higher doping percentage of Cu the ferromagnetic behavior was suppressed and paramagnetic nature was enhanced. The presence of non-polar E 2 high and E 2 low Raman modes in nanorods indicates that Cu doping didn’t change the wurtzite structure of ZnO.  相似文献   

19.
In this paper, a systematic investigations on the effects of transition metals such as Mn and Ni-dopant on physical properties of cadmium oxide (CdO) thin films coated on soda lime glass substrates by using SILAR method have been reported. The characterizations of un-doped, Mn-doped (Cd0.99 Mn0.01O) and Mn/Ni double doped CdO [(Cd0.99?xMn0.01NixO)(0?≤?x?≤?0.001)] films were investigated by SEM, EDX, XRD and UV–Vis spectrophotometry to determine the morphological, structural and optical properties, respectively. SEM analysis showed that the surface morphologies of the CdO films were influenced by Mn doping and Mn/Ni co-doping. The EDX result verified the presence of expected elements Cd, O, Mn and Ni in the growing solution. The crystal phases of the samples and their crystallinity quality have been investigated by XRD measurements. The X-ray diffractograms show all the diffraction peaks are highly intense also they demonstrate the preferential orientations of (111) and (200) directions. Optical investigations revealed red shift with Mn doping and Mn/Ni co-doping in the absorbance spectrum.  相似文献   

20.
Abstract

The synthesis, crystal structure and electrical conductivity properties of Cu-doped ZnO powders (in the range of 0.25 – 15 mole %) is reported. I-phase samples, which were indexed as single phase with a hexagonal (wurtzite) structure in the Cu-doped ZnO binary system, were determined by X-ray diffraction. The limit solubility of Cu in the ZnO lattice at this temperature is 5 mole % at 1000°C. The impurity phase was determined as CuO when compared with standard XRD data using the PDF program. We focused on single I-phase ZnO samples which synthesised at 1000°C because the limit solubility range is widest at this temperature. It was observed that the lattice parameters a increased and c decreased with Cu doping concentration. The morphology of the I-phase samples was analysed with a scanning electron microscope. The electrical conductivity of the pure ZnO and single I-phase samples were studied using the four-probe dc method at temperatures between 100 and 950°C in an air atmosphere. The electrical conductivity values of pure ZnO and 5 mole % Cu-doped ZnO samples at 100°C were 2 × 10?6 and 1.4 × 10?4 ohm?1 cm?1, and at 950°C they were 1.8 and 3.4 ohm?1 cm?1, respectively. In other words, the electrical conductivity slightly increased with Cu doping concentration. Also, it was observed that the activation energy of the I-phase samples was decreased with Cu doping concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号