首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NiCoP4O12/NiCoP nanorod-like arrays with tunable grain boundary density and pores were synthesized by the processes composed of hydrothermal and pyrolysis, in which, the electron structure of Ni and Co atoms characterized by X-ray photoelectron spectroscopy was contemporaneous inverse manipulated. The optimized NiCoP4O12/NiCoP arrays have a high specific capacitance of 507.8 μAh∙cm–2 at 1 mA∙cm–2, and good rate ability of 64.7% retention at 30-folds increased current density. Importantly, an ultra-stable ability, 88.5% of retention after 10000 cycles, was achieved in an asymmetric cell assembled of the NiCoP4O12/NiCoP arrays with activated carbon. In addition, the energy and power densities of an asymmetric cell were higher than those of other work, demonstrating as-prepared NiCoP4O12/NiCoP arrays are promising electrodes for supercapacitors.  相似文献   

2.
Cellulose has a wide range of applications in many fields due to their naturally degradable and low-cost characteristics, but few studies can achieve cellulose-nanofibers by conventional electrospinning. Herein, we demonstrate that the freestanding cellulose-based carbon nanofibers are successfully obtained by a special design of electrospinning firstly, pre-oxidation and high-temperature carbonization (1600 °C), which display a superior electrical conductivity of 31.2 S·cm–1 and larger specific surface area of 35.61 m2·g–1 than that of the polyacrylonitrile-based carbon nanofibers (electrical conductivity of 18.5 S·cm–1, specific surface area of 12 m2·g–1). The NiCo2O4 nanoflake arrays are grown uniformly on the cellulose-based carbon nanofibers successfully by a facile one-step solvothermal and calcination method. The as-prepared cellulose-based carbon nanofibers/NiCo2O4 nanoflake arrays are directly used as electrodes to achieve a high specific capacitance of 1010 F·g–1 at 1 A·g–1 and a good cycling stability with 90.84% capacitance retention after 3000 times at 10 A·g–1. Furthermore, the all-solid-state symmetric supercapacitors assembled from the cellulose-based carbon nanofibers/NiCo2O4 deliver a high energy density of 62 W·h·kg–1 at a power density of 1200 W·kg–1. Six all-solid-state symmetric supercapacitors in series can also power a ‘DHU’ logo consisted of 36 light emitting diodes, confirming that the cellulose-based carbon nanofiber is a promising carbon matrix material for energy storage devices.  相似文献   

3.
A simple method was developed to tune the porosity of coal-derived activated carbons, which provided a model adsorbent system to investigate the volumetric CO2 adsorption performance. Specifically, the method involved the variation of the activation temperature in a K2CO3 induced chemical activation process which could yield activated carbons with defined microporous (< 2 nm, including ultra-microporous < 1 nm) and meso-micro-porous structures. CO2 adsorption isotherms revealed that the microporous activated carbon has the highest measured CO2 adsorption capacity (6.0 mmol∙g–1 at 0 °C and 4.1 mmol∙g–1 at 25 °C), whilst ultra-microporous activated carbon with a high packing density exhibited the highest normalized capacity with respect to packing volume (1.8 mmol∙cm−3 at 0 °C and 1.3 mmol∙cm–3 at 25 °C), which is significant. Both experimental correlation analysis and molecular dynamics simulation demonstrated that (i) volumetric CO2 adsorption capacity is directly proportional to the ultra-micropore volume, and (ii) an increase in micropore sizes is beneficial to improve the volumetric capacity, but may lead a low CO2 adsorption density and thus low pore space utilization efficiency. The adsorption experiments on the activated carbons established the criterion for designing CO2 adsorbents with high volumetric adsorption capacity.  相似文献   

4.
Porous carbons with high specific area surfaces are promising electrode materials for supercapacitors. However, their production usually involves complex, time-consuming, and corrosive processes. Hence, a straightforward and effective strategy is presented for producing highly porous carbons via a self-activation procedure utilizing zinc gluconate as the precursor. The volatile nature of zinc at high temperatures gives the carbons a large specific surface area and an abundance of mesopores, which avoids the use of additional activators and templates. Consequently, the obtained porous carbon electrode delivers a satisfactory specific capacitance and outstanding cycling durability of 90.9% after 50000 cycles at 10 A∙g–1. The symmetric supercapacitors assembled by the optimal electrodes exhibit an acceptable rate capability and a distinguished cycling stability in both aqueous and ionic liquid electrolytes. Accordingly, capacitance retention rates of 77.8% and 85.7% are achieved after 50000 cycles in aqueous alkaline electrolyte and 10000 cycles in ionic liquid electrolyte. Moreover, the symmetric supercapacitors deliver high energy/power densities of 49.8 W∙h∙kg–1/2477.8 W∙kg–1 in the Et4NBF4 electrolyte, outperforming the majority of previously reported porous carbon-based symmetric supercapacitors in ionic liquid electrolytes.  相似文献   

5.
To realize renewable energy conversion,it is important to develop low-cost and high-efficiency electrocatalyst for oxygen evolution reaction.In this communication,a novel bijunction CoS/CeO2 electrocatalyst grown on carbon cloth is prepared by the interface engineering.The interface engineering of CoS and CeO2 facilitates a rapid charge transfer from CeO2 to CoS.Such an electrocatalyst exhibits outstanding electrocatalytic activity with a low overpotential of 311 mV at 10 mA·cm?2 and low Tafel slope of 76.2 mV·dec?1,and is superior to that of CoS(372 mV)and CeO2(530 mV)counterparts.And it has long-term durability under alkaline media.  相似文献   

6.
Unique self-assembled iron(II)molybdenum(IV)oxide(Fe2Mo3O8)mesoporous hollow spheres have been facilely constructed via the bubble-template-assisted hydrothermal synthesis method combined with simple calcination.The compact assembly of small nanoparticles on the surface of the hollow spheres not only provides more active sites for the Fe2Mo3O8,but also benefits the stability of the hollow structure,and thus improved the lithium storage properties of Fe2Mo3O8.The Fe2Mo3O8 mesoporous hollow spheres exhibit high initial discharge and charge capacities of 1189 and 997 mA?h?g?1 respectively,as well as good long-term cycling stability(866 mA?h?g?1 over 70 cycles)when used as a lithium-ion battery anode.This feasible material synthesis strategy will inspire the variation of structural design in other ternary metal molybdates.  相似文献   

7.
The current work describes the synthesis of a new bio-waste derived cellulosic-carbon supported-palladium nanoparticles enriched magnetic nanocatalyst (Pd/Fe3O4@C) using a simple multi-step process under aerobic conditions. Under mild reaction conditions, the Pd/Fe3O4@C magnetic nanocatalyst demonstrated excellent catalytic activity in the Hiyama cross-coupling reaction for a variety of substrates. Also, the Pd/Fe3O4@C magnetic nanocatalyst exhibited excellent catalytic activity up to five recycles without significant catalytic activity loss in the Hiyama cross-coupling reaction. Also, we explored the use of Pd/Fe3O4@C magnetic nanocatalyst as an electrocatalyst for hydrogen evolution reaction. Interestingly, the Pd/Fe3O4@C magnetic nanocatalyst exhibited better electrochemical activity compared to bare carbon and magnetite (Fe3O4 nanoparticles) with an overpotential of 293 mV at a current density of 10 mA·cm–2.  相似文献   

8.
As a hybrid energy storage device of lithium-ion batteries and supercapacitors, lithium-ion capacitors have the potential to meet the demanding needs of energy storage equipment with both high power and energy density. In this work, to solve the obstacle to the application of lithium-ion capacitors, that is, the balancing problem of the electrodes kinetic and capacity, two electrodes are designed and adequately matched. For the anode, we introduced in situ carbon-doped and surface-enriched unsaturated sulfur into the graphene conductive network to prepare transition metal sulfides, which enhances the performance with a faster lithium-ion diffusion and dominant pseudocapacitive energy storage. Therefore, the lithium-ion capacitors anode material delivers a remarkable capacity of 810 mAh∙g–1 after 500 cycles at 1 A∙g–1. On the other hand, the biomass-derived porous carbon as the cathode also displays a superior capacity of 114.2 mAh∙g–1 at 0.1 A∙g–1. Benefitting from the appropriate balance of kinetic and capacity between two electrodes, the lithium-ion capacitors exhibits superior electrochemical performance. The assembled lithium-ion capacitors demonstrate a high energy density of 132.9 Wh∙kg–1 at the power density of 265 W∙kg–1, and 50.0 Wh∙kg–1 even at 26.5 kW∙kg–1. After 10000 cycles at 1 A∙g–1, lithium-ion capacitors still demonstrate the high energy density retention of 81.5%.  相似文献   

9.
For high performance supercapacitors, novel hierarchical yolk-shell a-Ni(OH)2/Mn2O3 microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique a-Ni(OH)2 based yolk-shell microstructures decorated with numerous interconnected nanosheets and the hetero-composition features can synergistically enhance reactive site exposure and electron conduction within the microspheres, facilitate charge transfer between electrolyte and electrode materials, and release structural stress during OH chemisorption/desorption. Moreover, the Mn2O3 sediments distributed over the a-Ni(OH)2 microspheres can serve as an effective protective layer for electrochemical reactions. Consequently, when tested in 1 mol·L−1 KOH aqueous electrolyte for supercapacitors, the yolk-shell a-Ni(OH)2/Mn2O3 microspheres exhibited a considerably high specific capacitance of 2228.6 F·g−1 at 1 A·g−1 and an impressive capacitance retention of 77.7% after 3000 cycles at 10 A·g−1. The proposed a-Ni(OH)2/Mn2O3 microspheres with hetero-composition and unique hierarchical yolk-shell microstructures are highly promising to be used as electrode materials in supercapacitors and other energy storage devices.  相似文献   

10.
In this study, the hydrogen evolution performance of CdS nanorods is improved using ZnCo2O4. ZnCo2O4 nanospheres are synthesized using the hydrothermal and calcination methods, and CdS nanorods are synthesized using the solvothermal method. From the perspective of morphology, numerous CdS nanorods are anchored on the ZnCo2O4 microspheres. According to the experimental results of photocatalytic hydrogen evolution, the final hydrogen evolution capacity of 7417.5 μmol∙g–1∙h–1 is slightly more than two times that of the single CdS, which proves the feasibility of our study. Through various characterization methods, it is proved that the composite sample has suitable optoelectronic properties. In addition, ZnCo2O4 itself exhibits good conductivity and low impedance, which shortens the charge-transfer path. Overall, the introduction of ZnCo2O4 expands the adsorption range of light and improves the performance of photocatalytic hydrogen evolution. This design can provide reference for developing high-efficiency photocatalysts.  相似文献   

11.
The one-step highly selective oxidation of cyclohexane into cyclohexanone and cyclohexanol as the essential intermediates of nylon-6 and nylon-66 is considerably challenging. Therefore, an efficient and low-cost catalyst must be urgently developed to improve the efficiency of this process. In this study, a Co3O4–CeO2 composite oxide catalyst was successfully prepared through ultrasound-assisted co-precipitation. This catalyst exhibited a higher selectivity to KA-oil, which was benefited from the synergistic effects between Co3+/Co2+ and Ce4+/Ce3+ redox pairs, than bulk CeO2 and/or Co3O4. Under the optimum reaction conditions, 89.6% selectivity to KA-oil with a cyclohexane conversion of 5.8% was achieved over Co3O4–CeO2. Its catalytic performance remained unchanged after five runs. Using the synergistic effects between the redox pairs of different transition metals, this study provides a feasible strategy to design high-performance catalysts for the selective oxidation of alkanes.  相似文献   

12.
We reported an asymmetric supercapacitor technology where RuO2/TiO2 nanotube composite was used as positive electrode and the activated carbon as negative electrode in 1 mol/L KOH electrolyte solution. The electrochemical capacitance performance of the asymmetric supercapacitor was tested by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge tests. The results show that the asymmetric supercapacitor has electrochemical capacitance performance within potential range 0–1.4 V. A power density 1207 W/kg was obtained with an energy density of 5.7 W h/kg at a charge–discharge current density of 120 mA/cm2. The supercapacitor also exhibits a good cycling performance and keep 90% of initial capacity over 1000 cycles.  相似文献   

13.
为改善碳材料比电容低的问题以及氧化铁(Fe2O3)导电性和循环稳定性差的问题,采用氧化铁修饰生物质衍生碳(ATC)表面制备氧化铁/生物质碳(Fe2O3/ATC)复合材料,通过氧化铁和生物质衍生碳的协同效应使复合材料获得更高的比电容和更好的稳定性。利用扫描电镜(SEM)、X射线光电子能谱(XPS)、拉曼(Raman)光谱等技术手段对样品进行了表征。结果表明,制备的复合材料存在一定的孔隙结构,氧化铁纳米粒子被锚定在碳表面。当氧化铁和生物质衍生碳的质量比为1:1时,制备的复合材料具有最优的电化学性能,在3.0 mol/L氢氧化钾溶液中显示出430.8 F/g(电流密度约为1.0 A/g)的高比电容,电流密度增大20倍时电容保持率大于60%。将其作为负极构建的不对称超级电容器具有较高的电压窗口(0~1.6 V),并且实现了39.1 W·h/kg的高能量密度;同时表现出优异的循环稳定性,在电流密度为10 A/g下循环5 000次后拥有111%的电容保持率。  相似文献   

14.
In recent years, more and more research has been devoted to the development of new electrode materials with ultra-high energy density and high Faraday reaction activity, especially applying them to a new generation of supercapacitor energy storage systems. In this study, sea urchin-shaped V2O5 nanospheres and tetrakaidecahedron Fe2O3 nano boxes have been grown directly on flexible matrix carbon cloth by hydrothermal method. The hydrothermal time can control the microstructure of V2O5, and the morphology determines the performance of energy storage, the positive electrode material of sea urchin-shaped V2O5 nanosphere exhibits a maximum specific capacitance of 535 F·g-1. In addition, the tetrakaidecahedron Fe2O3 nano box is used as the negative electrode, and a new structure V2O5//Fe2O3 flexible supercapacitor is assembled. When the power density is 699.49 W·kg-1, the energy density can reach 46.06 W·h·kg-1. Moreover, it also has good mechanical flexibility, and the specific capacity retention rate is still as high as 83.4% after 5000 times of 180° bending cycle tests. This work provides a general and effective strategy for developing the next generation flexible electronic devices with ultra-high energy density.  相似文献   

15.
近年来,越来越多的研究致力于开发新型、超高能量密度、高法拉第反应活性的电极材料,尤其将其应用于新一代超级电容器储能系统。通过水热法直接在柔性基质碳布上生长海胆状V2O5纳米球和十四面体Fe2O3纳米盒子。V2O5微观结构和储能性能可通过改变水热时间进行调控。海胆状V2O5纳米球正极材料具有最高比容量535 F·g-1。以十四面体Fe2O3纳米盒子作为负极材料组装的新型结构V2O5-CC//Fe2O3-CC柔性超级电容器,在功率密度为699.49 W·kg-1时,能量密度可达46.06 W·h·kg-1。而且具有良好的机械柔韧性,在180°弯曲循环测试5000次,比容量保持率仍高达83.4%。研究为开发下一代超高能量密度、柔性电子器件提供了一种通用而有效的策略。  相似文献   

16.
As promising electrode materials for supercapacitors, nickel-cobalt bimetallic sulfides render the advantages of abundant redox reactions and inherently high conductivity. However, in general, unsatisfactory performance of low specific capacity, low rate capability, and fast capacity loss exist in Ni–Co sulfide electrodes. Herein, we rationally regulate phosphorus-doped nickel–cobalt sulfides (P-NCS) to enhance the electrochemical performance by gas–solid phosphorization. Moreover, carbon nanotubes (CNTs) as conductive additives are added to improve the cycle stability and conductivity and form the composite P-NCS/C/CNT. According to density functional theory, more electrons near the Fermi surface of P-NCS are demonstrated notionally than those of simple CoNi2S4. Electrochemical results manifest that P-NCS/C/CNT exhibits superior electrochemical performance, e.g., high specific capacity (932.0 C∙g‒1 at 1 A∙g‒1), remarkable rate capability (capacity retention ratio of 69.1% at 20 A∙g‒1), and lower charge transfer resistance. More importantly, the flexible hybrid asymmetric supercapacitor is assembled using P-NCS/C/CNT and activated carbon, which renders an energy density of 34.875 W·h∙kg‒1 at a power density of 375 W∙kg‒1. These results show that as-prepared P-NCS/C/CNT demonstrates incredible possibility as a battery-type electrode for high-performance supercapacitors.  相似文献   

17.
电极材料是决定超级电容器性能的关键因素。钴酸镍纳米材料因其合成简单,价格低廉,储量丰富且理论比电容较高等优点,成为超级电容器电极材料的研究热点。但钴酸镍纳米材料导电率较低、比表面积较小且电化学稳定性较差等缺点严重影响了其实际应用。本文简单介绍了钴酸镍纳米材料的晶体结构以及其作为超级电容器电极材料时的储能机理,同时结合一些示例归纳总结了钴酸镍基纳米材料的制备方法以及钴酸镍纳米材料的改性研究现状,包括形貌改性、复合改性及引入缺陷。最后指出,钴酸镍基纳米材料的环保且高效的制备方法,通过掺杂或缺陷等方法改善其电化学性能,增大其工作电压窗口以及探索适用于钴酸镍基超级电容器工作的电解液,将是未来研究的重点。  相似文献   

18.
超级电容器是很有发展潜力的电化学储能器件,其性能主要取决于电极材料。利用水热法,通过改变加入的卤离子(F-、Cl-、Br-)种类,可以简便地对镍钴(NiCo)基超级电容器电极材料的形貌、物相以及化学组成进行调控。由X射线衍射(XRD)和扫描电镜(SEM)等表征结果可知,F- 诱导生成纳米片支撑纳米线阵列,成分为稳定的NiCo LDH结构;Cl-/Br- 诱导生成纳米线,成分为碱式碳酸钴。从电化学测试结果可知,形貌和晶型对电化学性能有显著的影响。其中Cl- 调控的电极在120 ℃下反应3 h时,其形貌为纳米线,晶型偏向无定形,此时性能最优;在2 mA/cm2电流密度下不仅具有最大的面积比电容2 940 mF/cm2,且该电极与负极活性炭组装的器件具有1.8 V的大电压窗口和优异的循环稳定性。  相似文献   

19.
In this study, polybenzoxazine (PBZ)-based carbon microspheres were prepared via a facile method using a mixture of formaldehyde (F) and dimethylformamide (DMF) as the solvent. The PBZ microspheres were successfully obtained at the F/DMF weight ratios of 0.4 and 0.6. These microspheres exhibited high nitrogen contents after carbonization. The microstructures of all the samples showed an amorphous phase and a partial graphitic phase. The porous carbon with the F/DMF ratio of 0.4 showed significantly higher specific capacitance (275.1 F∙g‒1) than the reference carbon (198.9 F∙g‒1) at 0.05 A∙g‒1. This can be attributed to the synergistic electrical double-layer capacitor and pseudo-capacitor behaviors of the porous carbon with the F/DMF ratio of 0.4. The presence of nitrogen/oxygen functionalities induced pseudo-capacitance in the microspheres, and hence increased their total specific capacitance. After activation with CO2, the specific surface area of the carbon microspheres with the F/DMF ratio of 0.4 increased from 349 to 859 m2∙g‒1 and the specific capacitance increased to 424.7 F∙g‒1. This value is approximately two times higher than that of the reference carbon. The results indicated that the F/DMF ratio of 0.4 was suitable for preparing carbon microspheres with good supercapacitive performance. The nitrogen/oxygen functionalities and high specific surface area of the microspheres were responsible for their high capacitance.  相似文献   

20.
王捷  李圆  赵海雷 《化工学报》2020,71(4):1844-1850
通过软模板法(表面活性剂十六烷基三甲基溴化铵,CTAB)结合后续空气气氛热处理制备出纳米颗粒组装三维Co3O4微米花负极材料。研究中采用X射线衍射分析(XRD)、场发射扫描电子显微镜(FESEM)、循环伏安测试(CV)、恒流充放电测试以及交流阻抗测试(EIS)对合成样品进行表征分析。研究结果显示,Co3O4微米花材料独特的结构优势赋予其优良的电化学性能,在100 mA·g-1电流密度下电极具备约920 mA·h·g-1的循环可逆比容量;在500 mA·g-1电流密度下循环200次后的循环可逆比容量为757 mA·h·g-1,容量几乎无衰减。大电流循环性能测试显示,所制备电极即使在2 A·g-1电流密度下依旧具有476 mA·h·g-1的循环可逆比容量。简易、有效且低成本化的高性能微米花结构过渡金属氧化物负极材料制备工艺将大大加速转换型电极材料的实际有效应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号