首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the implementation of impedance control for a hydraulically driven hexapod robot named COMET‐IV, which can walk on uneven and extremely soft terrain. To achieve the dynamic behavior of the hexapod robot, changes in center of mass and body attitude must be taken into consideration during the walking periods. Indirect force control via impedance control is used to address these issues. Two different impedance control schemes are developed and implemented: single‐leg impedance control and center of mass‐‐based impedance control. In the case of single‐leg impedance control, we derive the necessary impedance and adjust parameters (mass, damping, and stiffness) according to the robot legs' configuration. For center of mass–based impedance control, we use the sum of the forces of the support legs as a control input (represented by the body's current center of mass) for the derived impedance control and adjust parameters based on the robot body's configuration. The virtual forces from the robot body's moment of inertia are adapted to achieve optimal control via a linear quadratic regulator method for the proposed indirect attitude control. In addition, a compliant switching mechanism is designed to ensure that the implementation of the controller is applicable to the tripod sequences of force‐based walking modules. Evaluation and verification tests were conducted in the laboratory and the actual field with uneven terrain and extremely soft surfaces. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
We report on a continuous-time rigid-body pose estimator for a walking hexapod robot. Assuming at least three legs remain in ground contact at all times, our algorithm uses the outputs of six leg-configuration sensor models together with a priori knowledge of the ground and robot kinematics to compute instantaneous estimates of the 6-degrees-of-freedom (6-DOF) body pose. We implement this estimation procedure on the robot RHex by means of a novel sensory system incorporating a model relating compliant leg member strain to leg configuration delivered to the onboard CPU over a customized cheap high-performance local wireless network. We evaluate the performance of this algorithm at widely varying body speeds and over dramatically different ground conditions by means of a 6-DOF vision-based ground-truth measurement system (GTMS). We also compare the odometry performance to that of sensorless schemes - both legged as well as on a wheeled version of the robot - using GTMS measurements of elapsed distance.  相似文献   

3.
This paper extends the authors' previous results on fault tolerant locomotion of the hexapod robot on even terrain by relaxing nonoverlap of redefined reachable cells of legs and considering crab walking. It is shown that in fault tolerant locomotion two adjacent legs of the hexapod robot can have overlapping redefined reachable cells with each other and consequently the stride length of the gaits is increased. Also, the optimal fault tolerant periodic gaits for hexapod robots to have the maximum stride length in one cycle in crab walking on even terrain are derived with distinct reachable cells. The derived sequence for crab walking has different orders of leg swing according to the relative values of the crab angle and some design parameters of the robot  相似文献   

4.
In this paper, we will compare the walking behavior of quadruped and hexapod walking MEMS robots. These robots are fabricated by connecting same modules, which are composed of a couple of independent leg mechanisms. Independent leg mechanisms can actuate the single leg by a single artificial muscle wire. The neural networks IC that mimics real living organisms controls the mechanical systems. The length and weight of the quadruped MEMS robot were 7.2 mm and 95.8 mg, respectively. The quadruped robot showed the walking speed of 24.6 mm/min. The robot tended to lose its balance and the weight balance is quite important for the moving quadruped. On the other hand, the length and weight of the hexapod MEMS robot were 9.0 mm and 162 mg, respectively. The hexapod robot showed stable walking. The speed was 27.0 mm/min.  相似文献   

5.
提出一种并联六轮足移动机器人.该机器人设有多模式Stewart型腿结构,其负载能力大,集成了轮式运动和足式运动的优点,可实现足式、轮式、轮足复合式运动.首先,阐述了机器人设计思路,对电动并联六轮足机器人的硬件系统和控制系统进行设计.其次,针对足式运动模式,设计了一套完整的足式"三角"步态和稳定行走算法,该算法可降低足端与地面之间的垂直方向冲击,防止足式运动拖腿或打滑;针对轮式运动模式,设计并介绍了6轮协同控制和轮式协同转向原理;针对轮足复合式运动模式,介绍了变高度、变支撑面、变轮距、主动隔振控制原理,重点分析了主动隔振控制和变轮距控制,可实现主动隔振及姿态平稳控制,提高了机器人在崎岖颠簸地形下的轮足复合式运动的稳定性.最后,对电动并联六轮足机器人的足式、轮式、轮足复合式运动模式进行实验,实验结果验证了本文提出的并联六轮足移动机器人设计的可行性和各运动模式下驱动与控制算法的有效性.  相似文献   

6.
Fault-tolerant locomotion of the hexapod robot   总被引:4,自引:0,他引:4  
In this paper, we propose a scheme for fault detection and tolerance of the hexapod robot locomotion on even terrain. The fault stability margin is defined to represent potential stability which a gait can have in case a sudden fault event occurs to one leg. Based on this, the fault-tolerant quadruped periodic gaits of the hexapod walking over perfectly even terrain are derived. It is demonstrated that the derived quadruped gait is the optimal one the hexapod can have maintaining fault stability margin nonnegative and a geometric condition should be satisfied for the optimal locomotion. By this scheme, when one leg is in failure, the hexapod robot has the modified tripod gait to continue the optimal locomotion.  相似文献   

7.
A comparison of three insect-inspired locomotion controllers   总被引:1,自引:0,他引:1  
This paper compares three insect inspired controllers which were implemented on an autonomous hexapod robot. There is a growing interest in using insect locomotion schemes to control walking robots. Researchers' interest in insect-based controllers ranges from understanding the biological basis of locomotion control in insects to building real-time walking machines which require relatively little computational power. Several models for insect locomotion exist, and robotics researchers tend to adopt one approach and experiment with it.

In contrast, this paper offers a comparison of three insect inspired controllers — all of which were implemented and tested on the same autonomous hexapod robot. Some of the controllers used reflex-based mechanisms whereas others used pattern-based mechanisms. Reflexive controllers exploit sensory stimulus and response reactions to produce leg motion and gait coordination. In contrast, pattern-based controllers depend more upon pre-programmed patterns of behavior which may be influenced by external events. Typically, these pre-programmed patterns of behavior are implemented using central pattern generators (CPGs).

In this work, we compare gait coordination performance of three controllers on flat terrain. We extend the comparison to include leg loading considerations, disabled leg compensation, and externally applied leg perturbations. We discuss the differences between controllers with respect to inconsistent leg retraction velocities, leg design issues, sensing requirements, and computational issues. The robot performed quite differently under varying experimental conditions depending upon which controller was used. We found that controller performance was the most sensitive to robot design parameters. For our case, we had the most success with pattern-based mechanisms given the leg design of our robot and its limitations in controlling the retraction velocity of its legs. The pattern-based mechanisms allowed the robot to remain stable over a variety of gaits while the robot was subjected to loading the legs, disabling a leg, and physically disturbing the legs. The reflexive mechanisms were less successful at maintaining stability when the robot's legs were increasingly disrupted.  相似文献   


8.
This study investigates the problem of dynamic walking impact on a biped robot. Two online variable stiffness control algorithms, i.e., torque balance algorithm (TBA) and surface fitting algorithm (SFA), are proposed based on virtual spring leg to achieve compliant performance. These two algorithms target on solving the high nonlinearity commonly existing in legged robot actuators. A planar biped robot experiment platform is designed for testing the proposed variable stiffness control. The experiments compare the performance of TBA and SFA and verify that applying the variable stiffness control of a virtual spring leg is capable of effectively absorbing unforeseen ground impacts and thus improving stability and safety of walking biped robots.  相似文献   

9.
This paper reports the design of a new hexapod walking robot, ASURA I, inspired by the physical features of a harvestman’s behavior. ASURA I has a special mobile form with one compact body and much longer legs than conventional hexapod walking robots. This form enhances the walking performance of the robot on rocky or uneven terrain. Here, we present the design and analysis of the leg mechanism, body structure design, gait planning, and prototype development. The long legs (relative to the body) are managed by special parallel link mechanisms, which powerfully and effectively drive the leg joints. The leg mechanism is analyzed by its kinematics, singularity, and static characteristics. The leg length and weight of ASURA I is 1.3 m and 27 kg, respectively. The alternating tripod and wave gaits of ASURA I are successfully demonstrated in a series of walking experiments.  相似文献   

10.
Insects, like dung beetles, show fascinating locomotor abilities. They can use their legs to walk on complex terrains (e.g., rocky and curved surfaces) and to manipulate objects. They also exploit their compliant tarsi, increasing the contact area between the legs and surface, to enhance locomotion, and object manipulation efficiency. Besides these biomechanical components, their neural control allows them to move at a proper frequency with respect to their biomechanical properties and to quickly adapt their movements to deal with environmental changes. Realizing these complex achievements on artificial systems remains a grand challenge. As a step towards this direction, we present here our first prototype of an artificial dung beetle-like leg with compliant tarsus by analyzing real dung beetle legs through \(\mu\)CT scans. Compliant tarsus was designed according to the so-called fin ray effect. Real robot experiments show that the leg with compliant tarsus can efficiently move on rocky and curved surfaces. We also apply neural control, based on a central pattern generator (CPG) circuit and synaptic plasticity, to autonomously generate a proper moving frequency of the leg. The controller can also adapt the leg movement to deal with environmental changes, like different treadmill speeds, within a few steps.  相似文献   

11.
Biped walking remains a difficult problem, and robot models can greatly facilitate our understanding of the underlying biomechanical principles as well as their neuronal control. The goal of this study is to specifically demonstrate that stable biped walking can be achieved by combining the physical properties of the walking robot with a small, reflex-based neuronal network governed mainly by local sensor signals. Building on earlier work (Taga, 1995; Cruse, Kindermann, Schumm, Dean, & Schmitz, 1998), this study shows that human-like gaits emerge without specific position or trajectory control and that the walker is able to compensate small disturbances through its own dynamical properties. The reflexive controller used here has the following characteristics, which are different from earlier approaches: (1) Control is mainly local. Hence, it uses only two signals (anterior extreme angle and ground contact), which operate at the interjoint level. All other signals operate only at single joints. (2) Neither position control nor trajectory tracking control is used. Instead, the approximate nature of the local reflexes on each joint allows the robot mechanics itself (e.g., its passive dynamics) to contribute substantially to the overall gait trajectory computation. (3) The motor control scheme used in the local reflexes of our robot is more straightforward and has more biological plausibility than that of other robots, because the outputs of the motor neurons in our reflexive controller are directly driving the motors of the joints rather than working as references for position or velocity control. As a consequence, the neural controller and the robot mechanics are closely coupled as a neuromechanical system, and this study emphasizes that dynamically stable biped walking gaits emerge from the coupling between neural computation and physical computation. This is demonstrated by different walking experiments using a real robot as well as by a Poincaré map analysis applied on a model of the robot in order to assess its stability.  相似文献   

12.
由于六足仿生机器人的足数较多,控制其稳定行走较为复杂,针对控制六足机器人稳定行走的要求,该六足机器人的腿部是参照蚂蚁的腿部结构进行设计,并对其进行建模分析.整个系统在硬件上选取了Arduino、无线模块、显示模块、舵机控制板等;软件上选用Qt Creator在上位机上编程,用于远程遥控六足机器人及观察其行走状态变化;在步态控制上采用了三角步态控制算法.通过设计机械结构、建模分析以及硬件、软件和算法的结合,实现了六足仿生机器人的稳定行走.  相似文献   

13.
Locomotion control of legged robots is a very challenging task because very accurate foot trajectory tracking control is necessary for stable walking. An electro-hydraulically actuated walking robot has sufficient power to walk on rough terrain and carry a heavier payload. However, electro-hydraulic servo systems suffer from various shortcomings such as a high degree of nonlinearity, uncertainty due to changing hydraulic properties, delay due to oil flow and dead-zone of the proportional electromagnetic control valves. These shortcomings lead to inaccurate analytical system model, therefore, application of classical control techniques result into large tracking error. Fuzzy logic is capable of modeling mathematically complex or ill-defined systems. Therefore, fuzzy logic is becoming popular for synthesis of control systems for complex and nonlinear plants. In this investigation, a two-degree-of-freedom fuzzy controller, consisting of a one-step-ahead fuzzy prefilter in the feed-forward loop and a PI-like fuzzy controller in the feedback loop, has been proposed for foot trajectory tracking control of a hydraulically actuated hexapod robot. The fuzzy prefilter has been designed by a genetic algorithm (GA) based optimization. The prefilter overcomes the flattery delay caused by the hydraulic dead-zone of the electromagnetic proportional control valve and thus helps to achieve better tracking. The feedback fuzzy controller ensures the stability of the overall system in the face of model uncertainty associated with hydraulically actuated robotic mechanisms. Experimental results exhibit that the proposed controller manifests better foot trajectory tracking performance compared to single-degree-of-freedom (SDF) fuzzy controller or optimal classical controller like state feedback LQR controller.  相似文献   

14.
It is a widespread idea that animal-legged locomotion is better than wheeled locomotion on natural rough terrain. However, the use of legs as a locomotion system for vehicles and robots still has a long way to go before it can compete with wheels and trucks, even on natural ground. This paper aims to solve two main disadvantages plaguing walking robots: their inability to react to external disturbances (which is also a drawback of wheeled robots); and their extreme slowness. Both problems are reduced here by combining: 1) a gait-parameter-adaptation method that maximizes a dynamic energy stability margin and 2) an active-compliance controller with a new term that compensates for stability variations, thus helping the robot react stably in the face of disturbances. As a result, the combined gait-adaptation approach helps the robot achieve faster, more stable compliant motions than conventional controllers. Experiments performed with the SILO4 quadruped robot show a relevant improvement in the walking gait  相似文献   

15.
控制六足仿生机器人三角步态的研究   总被引:2,自引:1,他引:1  
基于仿生学原理,在分析六足昆虫运动机理的基础上,对六足仿生机器人的三角步态运动原理进行了分析.论文涉及六腿机器人步态研究的一些基本参数的描述,讨论了用相对运动的原理研究步态的方法,结合慧鱼机器人组合包中的构件拼出六足仿生机器人.该机器人模型结构简单,设计独特,能前进和后退,且能避开小型障碍物.基于三角步态运动原理对其进行了反复实验,实验结果表明六足仿生机器人具有较好的机动性和稳定性.  相似文献   

16.
基于AT89S52的六足机器人运动控制器的设计   总被引:1,自引:0,他引:1  
文章应用AT89S52内部的2个定时器,采用多舵机分时控制方法,设计了可驱动机器人足部12个舵机协调运动的控制器;按照六足机器人典型行走步态,实现了六足机器人按步态规划运动。测试结果验证了该设计方案的正确性和可靠性。  相似文献   

17.
Global behavior via cooperative local control   总被引:1,自引:1,他引:0  
The purpose of this paper is twofold. First, we outline important issues in designing real-time controllers for robots with numerous sensors, actuators, and behaviors. We address these issues by implementing a behavior based controller on a sophisticated autonomous robot. Hence, this work provides a point of reference for the scalability, ease of design, and effectiveness of the behavior based control for complex robots. Second, we explore the viability of using cooperation among local controllers to achieve coherent global behavior. Our approach is to decompose a difficult control task for a complex robot into a multitude of simpler control tasks for robotic subsystems. We illustrate and examine the effectiveness of this approach via rough terrain locomotion using an autonomous hexapod robot. Traversing rough terrain is a good task to test the viability of this approach because it requires a considerable amount of leg coordination. We found that implementing a complicated global control task with cooperating local controllers can effectively control complex robots.Support for this research was provided in part by a NASA Graduate Student Researcher Program Fellowship administered through the Jet Propulsion Laboratory, by Jet Propulsion Laboratory grant 959333, and by the Advanced Research Projects Agency under Office of Naval Research contract N00014-91-J-4038.  相似文献   

18.
RHex: A Biologically Inspired Hexapod Runner   总被引:3,自引:0,他引:3  
RHex is an untethered, compliant leg hexapod robot that travels at better than one body length per second over terrain few other robots can negotiate at all. Inspired by biomechanics insights into arthropod locomotion, RHex uses a clock excited alternating tripod gait to walk and run in a highly maneuverable and robust manner. We present empirical data establishing that RHex exhibits a dynamical (bouncing) gait—its mass center moves in a manner well approximated by trajectories from a Spring Loaded Inverted Pendulum (SLIP)—characteristic of a large and diverse group of running animals, when its central clock, body mass, and leg stiffnesses are appropriately tuned. The SLIP template can function as a useful control guide in developing more complex autonomous locomotion behaviors such as registration via visual servoing, local exploration via visual odometry, obstacle avoidance, and, eventually, global mapping and localization.  相似文献   

19.
This paper proposes the walking pattern generation method, the kinematic resolution method of center of mass (CoM) Jacobian with embedded motions, and the design method of posture/walking controller for humanoid robots. First, the walking pattern is generated using the simplified model for bipedal robot. Second, the kinematic resolution of CoM Jacobian with embedded motions makes a humanoid robot balanced automatically during movement of all other limbs. Actually, it offers an ability of whole body coordination to humanoid robot. Third, the posture/walking controller is completed by adding the CoM controller minus the zero moment point controller to the suggested kinematic resolution method. We prove that the proposed posture/walking controller brings the disturbance input-to-state stability for the simplified bipedal walking robot model. Finally, the effectiveness of the suggested posture/walking control method is shown through experiments with regard to the arm dancing and walking of humanoid robot.  相似文献   

20.
《Advanced Robotics》2013,27(3):263-282
This paper is concerned with rule-based coordination of motion for rough-terrain locomotion by a hexapod walking machine. The logic for generating leg commands is written in Prolog while the simulation of the terrain and of the vehicle kinematics, as well as low-level on-board computer functions, are written in extended Common Lisp. It is found that this approach results in code that is much easier to understand and modify than previous motion coordination programs written in Pascal. We believe that the motion coordination rule set included in this paper results in better adaptation of walking machine leg sequencing to terrain constraints than any previously published means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号