首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vacuum chambers of Steady State Superconducting (SST-1) Tokamak comprises of the vacuum vessel and the cryostat. The plasma will be confined inside the vacuum vessel while the cryostat houses the superconducting magnet systems (TF and PF coils), LN2 cooled thermal shields and hydraulics for these circuits. The vacuum vessel is an ultra-high (UHV) vacuum chamber while the cryostat is a high-vacuum (HV) chamber. In order to achieve UHV inside the vacuum vessel, it would be baked at 150 °C for longer duration. For this purpose, U-shaped baking channels are welded inside the vacuum vessel. The baking will be carried out by flowing hot nitrogen gas through these channels at 250 °C at 4.5 bar gauge pressure. During plasma operation, the pressure inside the vacuum vessel will be raised between 1.0 × 10?4 mbar and 1.0 × 10?5 mbar using piezoelectric valves and control system. An ultimate pressure of 4.78 × 10?6 mbar is achieved inside the vacuum vessel after 100 h of pumping. The limitation is due to the development of few leaks of the order of 10?5 mbar l/s at the critical locations of the vacuum vessel during baking which was confirmed with the presence of nitrogen gas and oxygen gas with the ratio of ~3.81:1 indicating air leak. Similarly an ultimate vacuum of 2.24 × 10?5 mbar is achieved inside the cryostat. Baking of the vacuum vessel up to 110 °C with ±10 °C deviation was achieved with a net mass flow rate of 0.8 kg/s at 1.5 bar gauge inlet pressure and supply temperature of 230 °C at the heater end. Also during gas feed system installation, the pressure inside the VV was raised from 3.01 × 10?5 mbar to 1.72 × 10?4 mbar by triggering a pulse of lower amplitude of 25 voltage direct current (VDC) for 100 s to piezoelectric valve. This paper describes in detail the design and implementation of the various vacuum subsystems including relevant experimental results.  相似文献   

2.
The plasma vessel of the fusion experiment Wendelstein 7-X (W7-X) is a plasma vessel covering a plasma volume of about 30 m3. The vacuum conditions for plasma experiments inside the plasma vessel are supposed to be in a range of 1 × 10−8 mbar (ultra high vacuum conditions) after evacuation and conditioning. The 254 ports of the plasma vessel allow an external access to the inner space of the plasma vessel. Ports for heating and diagnostic systems are equipped with gate valves or with shutters. The vacuum gate valves are used as a controllable mechanical and a vacuum disconnection point between diagnostics and heating systems on the port side and the inner plasma vessel on the other side. The shutters are responsible for an optical and thermal protection for port windows or installed equipments inside the ports. After an overview of the main requirements for the control of the huge number of gate valves and shutters for the operational phases 1 and 2 of W7-X the design and realization of a centralized control system for controlling and observing all shutters and the majority of gate valves of the machine Wendelstein 7-X will be introduced and discussed.  相似文献   

3.
The Max-Planck-Institut für Plasmaphysik in Greifswald is building up the stellarator fusion experiment Wendelstein 7-X (W7-X). To operate the superconducting magnet system the vacuum and the cold structures are protected by a thermal insulated cryostat. The plasma vessel forms the inner cryostat wall, the outer wall is realised by a thermal insulated outer vessel. In addition 254 thermal insulated ports are fed through the cryogenic vacuum to allow the access to the plasma vessel for heating systems, supply lines or plasma diagnostics.The thermal insulation is being manufactured and assembled by MAN Diesel & Turbo SE (Germany). It consists of a multi-layer insulation (MLI) made of aluminized Kapton with a silk like fibreglass spacer and a thermal shield covering the inner cryostat surfaces. The shield on the plasma vessel is made of fibreglass reinforced epoxy resin with integrated copper meshes. The outer vessel insulation is made of brass panels with an average size of 3.3 × 2.0 m2. Cooling loops made of stainless steel are connected via copper strips to the brass panels. Especially the complex 3 D shape of the plasma vessel, the restricted space inside the cryostat and the consideration of the operational component movements influenced the design work heavily. The manufacturing and the assembly has to fulfil stringent geometrical tolerances e.g. for the outer vessel panels +3/?2 mm.  相似文献   

4.
The commissioning and the initial operation for the first plasma in the KSTAR device have been accomplished successfully without any severe failure preventing the device operation and plasma experiments. The commissioning is classified into four steps: vacuum commissioning, cryogenic cool-down commissioning, magnet system commissioning, and plasma discharge.Vacuum commissioning commenced after completion of the tokamak and basic ancillary systems construction. Base pressure of the vacuum vessel was about 3 × 10?6 Pa and that of the cryostat about 2.7 × 10?4 Pa, and both levels meet the KSTAR requirements to start the cool-down operation. All the SC magnets were cooled down by a 9 kW rated cryogenic helium facility and reached the base temperature of 4.5 K in a month. The performance test of the superconducting magnet showed that the joint resistances were below 3 nΩ and the resistance to ground after cool-down was over 1 GΩ. An ac loss test of each PF coil made by applying a dc biased sinusoidal current showed that the coupling loss was within the KSTAR requirement with the coupling loss time constant less than 35 ms for both Nb3Sn and NbTi magnets. All the superconducting magnets operated in stable without quench for long-time dc operation and with synchronized pulse operation by the plasma control system (PCS). By using an 84 GHz ECH system, second harmonic ECH assisted plasma discharges were produced successfully with loop voltage of less than 3 V. By the real-time feedback control, operation of 100 kA plasma current with pulse length up to 865 ms was achieved, which also meet the first plasma target of 100 kA and 100 ms. The KSTAR device will be operated to meet the missions of steady-state and high-beta achievement by system upgrades and collaborative researches.  相似文献   

5.
A baking system for the Korea Superconducting Tokamak Advanced Research (KSTAR) plasma facing components (PFCs) is designed and operated to achieve vacuum pressure below 5 × 10?7 mbar in vacuum vessel with removing impurities. The purpose of this research is to prevent the fracture of PFC because of thermal stress during baking the PFC, and to accomplish stable operation of the baking system with the minimum life cycle cost. The uniformity of PFC temperature in each sector was investigated, when the supply gas temperature was varied by 5 °C per hour using a heater and the three-way valve at the outlet of a compressor. The alternative of the pipe expansion owing to hot gas and the cage configuration of the three-way valve were also studied. During the fourth campaign of the KSTAR in 2011, nitrogen gas temperature rose up to 300 °C, PFC temperature reached at 250 °C, the temperature difference among PFCs was maintained at below 8.3 °C, and vacuum pressure of up to 7.24 × 10?8 mbar was achieved inside the vacuum vessel.  相似文献   

6.
Korea Superconducting Tokamak Advanced Research (KSTAR) is upgraded for its KSTAR 3rd campaign for new target mission to produce the D-shaped plasma with a target plasma current of 500 kA and/or pulse length of 5 s. New Plasma Facing Components (PFCs) are installed which leads to the increase of the surface area of the vessel by a factor of about 5. The vacuum conditioning such as the vessel baking has been performed in order to remove various kinds of impurities including H2O, carbon and oxygen for the plasma. The total outgassing rate in the KSTAR 1st campaign was measured as 1.5 × 10?4 mbar ? s?1 which is increased by a factor of 3 (6.49 × 10?4 mbar ? s?1) in the KSTAR 3rd campaign. Nevertheless, the outgassing rates per unit area have been decreased from 9.31 × 10?5 mbar ? m?2 s?1 to 1.22 × 10?5 mbar ? m?2 s?1 due to the upgrade of baking system and series of baking operation.  相似文献   

7.
8.
Metastable pseudomorphic Ge0.06Si0.94 alloy layers grown by molecular beam epitaxy (MBE) on Si (1 0 0) substrates were implanted at room temperature by 70 keV BF2+ ions with three different doses of 3 × 1013, 1 × 1014, and 2.5 × 1014 cm−2. The implanted samples were subsequently annealed at 800°C and 900°C for 30 min in a vacuum tube furnace. Observed by MeV 4He channeling spectrometry, the sample implanted at a dose of 2.5 × 1014 BF2+ cm−2 is amorphized from surface to a depth of about 90 nm among all as-implanted samples. Crystalline degradation and strain-relaxation of post-annealed Ge0.06Si0.94 samples become pronounced as the dose increases. Only the samples implanted at 3 × 1013 cm−2 do not visibly degrade nor relax during anneal at 800°C . In the leakage current measurements, no serious leakage is found in most of the samples except for one which is annealed at 800°C for 30 min after implantation to a dose of 2.5 × 1014 cm−2. It is concluded that such a low dose of 3 × 1013 BF2+ cm−2 can be doped by implantation to conserve intrinsic strain of the pseudomorphic GeSi, while for high dose regime to meet the strain-relaxation, annealing at high temperatures over 900°C is necessary to prevent serious leakages from occuring near relaxed GeSi/Si interfaces.  相似文献   

9.
The JT-60SA cryostat is a stainless steel vacuum vessel (14 m diameter, 16 m height) which encloses the Tokamak providing the vacuum environment (10?3 Pa) necessary to limit the transmission of thermal loads to the components at cryogenic temperature. It must withstand both external atmospheric pressure during normal operation and internal overpressure in case of an accident.The paper summarizes the structural analyses performed in order to validate the JT-60SA cryostat vessel body design. It comprises several analyses: a buckling analysis to demonstrate stability under the external pressure; an elastic and an elastic–plastic stress analysis according to ASME VIII rules, to evaluate resistance to plastic collapse including localized stress concentrations; and, finally, a detailed analysis with bolted fasteners in order to evaluate the behavior of the flanges, assuring the integrity of the vacuum sealing welds of the cryostat vessel body.  相似文献   

10.
The CONSEN (CONServation of ENergy) code is a fast running code to simulate thermal-hydraulic transients, specifically developed for fusion reactors. In order to demonstrate CONSEN capabilities, the paper deals with the accident analysis of the magnet induced confinement bypass for ITER design 1996. During a plasma pulse, a poloidal field magnet experiences an over-voltage condition or an electrical insulation fault that results in two intense electrical arcs. It is assumed that this event produces two one square meters ruptures, resulting in a pathway that connects the interior of the vacuum vessel to the cryostat air space room. The rupture results also in a break of a single cooling channel within the wall of the vacuum vessel and a breach of the magnet cooling line, causing the blow down of a steam/water mixture in the vacuum vessel and in the cryostat and the release of 4 K helium into the cryostat. In the meantime, all the magnet coils are discharged through the magnet protection system actuation. This postulated event creates the simultaneous failure of two radioactive confinement barrier and it envelopes all type of smaller LOCAs into the cryostat. Ice formation on the cryogenic walls is also involved. The accident has been simulated with the CONSEN code up to 32 h. The accident evolution and the phenomena involved are discussed in the paper and the results are compared with available results obtained using the MELCOR code.  相似文献   

11.
This paper presents the results of reliability analysis of Shutdown System (SDS) of Indian Prototype Fast Breeder Reactor. Reliability analysis carried out using Fault Tree Analysis predicts a value of 3.5 × 10−8/de for failure of shutdown function in case of global faults and 4.4 × 10−8/de for local faults. Based on 20 de/y, the frequency of shutdown function failure is 0.7 × 10−6/ry, which meets the reliability target, set by the Indian Atomic Energy Regulatory Board. The reliability is limited by Common Cause Failure (CCF) of actuation part of SDS and to a lesser extent CCF of electronic components. The failure frequency of individual systems is <1 × 10−3/ry, which also meets the safety criteria. Uncertainty analysis indicates a maximum error factor of 5 for the top event unavailability.  相似文献   

12.
The in-vessel control coil (IVCC) system, which has been designed for dedication of various active feedback plasma control functions, successfully fabricated and installed in the vacuum vessel of the Korea Superconducting Tokamak Advanced Research (KSTAR). The IVCC system consists of sixteen segmented coils that were independently fabricated outside the vacuum vessel and installed without any inside welding or brazing joints. The segmented coil system has several advantages such as eliminating possibility of cooling water leakage at the welded or brazed joints, simplification in fabrication and installation, and easy repair and maintenance of the coil system. Each segment contains eight oxygen-free high conductive coppers, which are grouped to four pairs, called as sections. Consequently, a segmented coil forms four sections for position control, field error correction (FEC), and resistive wall mode (RWM) control in accordance with electrical connection outside the cryostat. The eight conductors (or four sections) with internal coolant holes were enclosed in a rectangular welded jacket made of stainless steel 316LN and electrically insulated from the conductors by epoxy/glass composite layers. This coil system was commissioned up to 5 kA (30 kA-turns) for 5 s to achieve tentative use for the fast vertical plasma position control in the 2010 campaign of the KSTAR. This paper describes the several remarkable results in the fabrication and installation of the IVCC as well as commissioning results.  相似文献   

13.
The Korea Superconductor Tokamak Advanced Research (KSTAR) device is a tokamak mainly composed of a vacuum vessel, superconducting magnets, and cryostat. The internal volume of the vacuum vessel is about 110 m3 with a target pressure of 1 × 10−6 Pa, while the volume of the cryostat is 450 m3 with a target pressure of 5 × 10−3 Pa. To attain these target pressures, two identical vacuum pumping systems consisting of dry pumps, mechanical booster pumps, turbo-molecular pumps, and cryopumps were installed. The control system of the vacuum pumping systems was built using the experimental physics and industrial control system (EPICS), which has various merits such as easy access, convenient extension and flexible integration. The pump-down test of the pumping ducts was successfully executed under the control of the EPICS system.  相似文献   

14.
《Journal of Nuclear Materials》2006,348(1-2):122-132
The release of Wigner energy from the graphite of the inner thermal column of the ASTRA research reactor has been studied by differential scanning calorimetry and simultaneous differential scanning calorimetry/synchrotron powder X-ray diffraction between 25 °C and 725 °C at a heating rate of 10 °C min−1. The graphite, having been subject to a fast-neutron fluence from ∼1017 to ∼1020 n cm−2 over the life time of the reactor at temperatures not exceeding 100 °C, exhibits Wigner energies ranging from 25 to 572 J g−1 and a Wigner energy accumulation rate of ∼7 × 10−17 J g−1/n cm−2. The shape of the rate-of-heat-release curves, e.g., maximum at ca. 200 °C and a fine structure at higher temperatures, varies with sample position within the inner thermal column, i.e., the distance from the reactor core. Crystal structure of samples closest to the reactor core (fast-neutron fluence >1.5−5.0 × 1019 n cm−2) is destroyed while that of samples farther from the reactor core (fast-neutron fluence <1.5−5.0 × 1019 n cm−2) is intact, with marked swelling along the c-axis. The dependence of the c lattice parameter on temperature between 25 °C and 200 °C as determined by Rietveld refinement for the non-amorphous samples leads to the expected microscopic thermal expansion coefficient along the c-axis of ∼ 26 × 10−6 °C−1. However, at 200 °C, coinciding with the maximum in the rate-of-heat-release curves, the rate of thermal expansion abruptly decreases indicating a crystal lattice relaxation. The 14C activity in the inner thermal column graphite ranges from 6 to 467 kBq g−1. The graphite of the inner thermal column of the ASTRA research reactor has been treated by heating to 400 °C for 24 h in a hot-cell facility prior to interim storage.  相似文献   

15.
KTX is a new reversed field pinch (RFP) magnetic confinement device which is under design in ASIPP and USTC. Major disruption (MD) events may occur in future operating process, which is simulated with the finite element (FE) method. The results present that the peaks of eddy currents on vessel and conductor shell are respectively 11.791 kA and 68.637 kA with maximum stress 67.1 MPa due to high transient electromagnetic (EM) force. It is confirmed that the structure is still strong enough to bear the electromagnetic loads even if the worst case. Besides, as KTX vacuum vessel will take the method of natural cooling for heat dissipation during plasma discharge (0.5–1.0 MA), a preliminary thermal calculation was implemented in normal condition to decide suitable time parameters such as duration and interval. It is suggested that the discharge interval should be no less than 5 min for the complete 1 MA plasma with 100 ms duration, which can guarantee the temperature of vacuum vessel below 200 °C.  相似文献   

16.
The erosion of soft a-C:D films by heat treatment in air and under vacuum is studied by ion-beam analysis. When the films are heated in air above 500 K, the film thickness and the areal densities of C and especially D decrease, and oxygen is incorporated in the films. The initial atomic loss rates of carbon and deuterium from the films are 2.6 × 1017 C atoms cm−2 h−1 and 4.8 × 1017 D atoms cm−2 h−1 at 550 K. However, after D depletion the films show a resistivity against further erosion due to annealing in air. When the films are heated under vacuum erosion starts at about 600 K and all components including D decrease proportionally to the film thickness. Thermal desorption spectroscopy of the films reveals the evolution of CxDy type hydrocarbons. Infrared analysis shows that the incorporated oxygen is chemically bonded to carbon. The thermally-activated decomposition of the soft a-C:D films is compared to that of hard a-C:D films and a reaction scheme is suggested.  相似文献   

17.
Monocrystals of sapphire have been subjected to ion implantation with 86 keV Si and 80 keV Cr ions to doses in the range of 5 × 1014–5 × 1016 cm−2 prior to thermal stress testing in a pulsed plasma. Above a certain critical dose ion implantation is shown to modify the near-surface structure of samples by introducing damage, which makes crack nucleation easier under the applied stress. The effect of ion dose on the stress resistance is investigated and the critical doses which produce a noticeable change in the stress resistance are determined. The critical dose for Si ions is shown to be much lower than that for Cr ions. However, for doses exceeding 2 × 1016 cm−2 the stress resistance parameter decreases to approximately the same value for both implants. The size of the implantation-induced crack nucleating centers and the density of the implantation-induced defects are considered to be the major factors determining the stress resistance of sapphire crystals irradiated with Si and Cr ions.  相似文献   

18.
Coolant water in blankets and divertor cassettes will be activated by neutrons during ITER operation. 16N and 17N are determined to be the most important activation products in the coolant water in terms of their impact on ITER design and performance. In this study, the geometry of cooling channels in blanket module 4 was described precisely in the ITER neutronics model ‘Alite-4’ based on the latest CAD model converted using MCAM developed by FDS Team. The 16N and 17N concentration distribution in the blanket, divertor cassette and their primary heat transport systems were calculated by MCNP with data library FENDL2.1. The activation of cooling pipes induced 17N decay neutrons was analyzed and compared with that induced by fusion neutrons, using FISPACT-2007 with data library EAF-2007. The outlet concentration of blanket and divertor cooling systems was 1.37 × 1010 nuclide/cm3 and 1.05 × 1010 nuclide/cm3 of 16N, 8.93 × 106 nuclide/cm3 and 0.33 × 105 nuclide/cm3 of 17N. The decay gamma-rays from 16N in activated water could be a problem for cryogenic equipments inside the cryostat. Near the cryostat, the activation of pipes from 17N decay neutrons was much lower than that from fusion neutrons.  相似文献   

19.
The RF based single driver ?ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 1012 cm?3 is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm2 as observed in BATMAN.In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 1011 cm?3 has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated.  相似文献   

20.
Fluorescent soft X-ray carbon Kα emission spectra (XES) have been used to characterize the bonding of carbon atoms in polyimide (PI) and polycarbosilane (PCS) films. The PI films have been irradiated with 40 keV nitrogen or argon ions, at fluences ranging from 1 × 1014 to 1 × 1016 cm−2. The PCS films have been irradiated with 5 × 1015 carbon ions cm−2 of 500 keV and/or annealed at 1000°C. We find that the fine structure of the carbon XES of the PI films changes with implanted ion fluence above 1 × 1014 cm−2 which we believe is due to the degradation of the PI into amorphous C:N:O. The width of the forbidden band as determined from the high-energy cut-off of the C Kα X-ray excitation decreases with the ion fluence. The bonding configuration of free carbon precipitates embedded in amorphous SiC which are formed in PCS after irradiation with C ions or combined treatments (irradiation and subsequent annealing) is close to either to that in diamond-like films or in silicidated graphite, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号