首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
锻造超高碳钢的球化工艺与力学性能   总被引:9,自引:0,他引:9  
利用碳浓度不均匀奥氏体离异共析转变机制,借助于相图计算技术,对UHCs-1.0Al(含Al 1.0%wt%)和UHCs-1.5Al(含Al 1.5wt%)两种锻造超高碳钢提出了在三相区奥氏体化并在共析转变温度低限等温球化工艺,并对不同球化组织的力学性能进行了测定。组织观察表明,含Al超高碳钢锻态组织为极细的珠光体组织,Al的添加对网状碳化物有抑制作用,两种超高碳钢经最佳的球化工艺处理后得到了碳化物弥散分布于铁素体基体的复相组织,随碳化物球化程度的提高,塑性指标显著改善。球化UHCs-1.5Al超高碳钢达到了良好的综合力学性能,σb,σs分别为1050MPa和740MPa,伸长率达到14%。  相似文献   

2.
对锻造态的1.37%C超高碳钢采用离异共析转变的工艺,得到铁素体基体上弥散分布碳化物颗粒的组织,随后进行二次正火热处理工艺。扫描电镜分析表明:在相同的保温时间内,随正火温度的升高,片层状珠光体越来越密集。室温拉伸试验显示出,超高碳钢获得了优异的综合力学性能,具有明显的屈服现象,强度和塑性均很好。  相似文献   

3.
对1.6%C超高碳钢进行离异共析和淬火+高温回火两种工艺球化预处理,获得了铁素体基体上分布超细碳化物组织,在此基础上进行了两类淬火处理。显微组织观察分析表明:淬火组织亚结构为位错与孪晶并存:采用感应加热淬火时随感应加热淬火次数增加,板条马氏体增加,孪晶马氏体减少。力学性能测试显示:本试验用超高碳钢强度与中碳结构钢相当;塑性很好,伸长率达17%。  相似文献   

4.
喷射成形超高碳钢的超塑性等温锻造性能研究   总被引:1,自引:0,他引:1  
研究了喷射成形超高碳钢的显微组织 ,表征了其超塑性变形的力学特征 ,喷射成形超高碳钢的最佳变形温度为 82 0℃ ,最佳应变速率为 2 5× 10 - 4s- 1 。测定了超塑性等温锻造后喷射成形超高碳钢的室温力学性能 ,并观察了其显微组织。结果表明 ,超塑性等温锻造工艺使超高碳钢的组织得到了致密化 ,其原始组织主要是均匀、细密的珠光体 ,锻造后则大部分转变为细小的等轴铁素体晶粒以及弥散分布于其上的碳化物的组织。  相似文献   

5.
张振忠  赵芳霞 《铸造技术》2004,25(10):799-802
超细晶超高碳钢是国外近年来发展起来的一类新型的、并具有重要发展前景的高性能钢铁材料.在系统总结大量文献资料的基础上,综述国内外近年来超细晶超高碳钢的研究进展,包括制备工艺,微观组织及其影响因素,室温力学性能,超塑性,层状超高碳钢复合材料等,指出今后超细晶超高碳钢研究的发展方向.  相似文献   

6.
以热机械处理获得的超细晶1.6%C超高碳钢为研究对象,借助电致超塑性压缩试验研究了电场强度和初始应变速率对超高碳钢超塑性的影响,并探讨了其与40Cr钢电致超塑性焊接的可行性.实验结果表明,在压缩温度780℃、初始应变速率(0.5-5.0)×10-4 s-1,试样接正极环状电极接负极条件下,超高碳钢的应力应变曲线呈现出明显的超塑性压缩流变特征,其应变速率敏感性指数为0.46;当电场强度为3 kV/cm时,其超塑稳态流变应力降低10%以上.在焊接温度780℃、初始应变速率1.5×10-4 s-1、预压应力56.6MPa、电场强度3 kV/cm条件下,超高碳钢与40Cr钢实现了电致超塑性焊接,其接头拉伸强度达到533 MPa,比不加电场时增加15%.  相似文献   

7.
铝合金化对超高碳钢先共析碳化物析出行为的影响   总被引:2,自引:0,他引:2  
通过对不同铝含量超高碳钢的相平衡热力学计算、热处理工艺试验以及扫描电镜的微观组织观察,研究了铝合金化对超高碳钢先共析碳化物的数量和析出行为的影响。结果表明,对碳含量为1.6%的超高碳钢,添加2%以上的铝,可以显著抑制先共析网状碳化物的析出。铝的添加,导致平衡状态下的先共析碳化物数量减少,尤其在2%Al附近,更为显著,是铝合金化抑制超高碳钢网状碳化物的主要原因。  相似文献   

8.
球化工艺对热轧超高碳钢组织性能的影响   总被引:1,自引:0,他引:1  
利用离异共析原理,采用不同的热处理工艺球化热轧超高碳钢。组织观察表明:热轧预处理消除了铸态下晶界网状粗大碳化物,并获得颗粒状碳化物与片状珠光体的混合组织。球化热处理时,奥氏体化温度升高、保温时间延长,碳化物颗粒的间距增大,减缓冷却速率增加碳化物的析出。对球化后超高碳钢进行拉伸力学性能试验,850℃球化后的强度很高(σ0.2=688.71MPa,σb=1005.78MPa),屈强比和伸长率分别为0.69、16.7%。拉伸后的断口形貌分析表明,超高碳钢拉伸过程中裂纹易在大颗粒碳化物处萌生、扩展。  相似文献   

9.
通过拉伸测试Ф0.61mmTi-50.8at%Ni合金丝材退火后热拉拔过程中不同直径丝材的力学性能和弹性性能,研究了热变形对TiNi形状记忆合金丝材力学性能及超弹性的影响规律。结果表明,经过650℃退火后Ti-50.8at%Ni合金丝材超弹性较差,而断裂伸长率达50%以上。随着热拉拔变形量增大,超弹性逐渐提高,而塑性迅速降低,当热拉拔总热变形量达50%时,丝材可以获得优良的超弹性能,△σ值(Rell-ReL)为200-250MPa,残余应变小于0.1%。同时伸长率大于10%。  相似文献   

10.
喷射成形1.8C-1.6Al超高碳钢快速凝固组织研究   总被引:2,自引:0,他引:2  
铸造1.8C-1.6Al超高碳钢(UHCS)由于冷速较低,晶粒粗大,珠光体片间距也较大,品界形成了粗大的碳化物网络,同时合金元素产生偏析,品内生成了大块的合金渗碳体,使得它在室温下为脆性,机加工性能极差。喷射成形1.8C—1.6Al超高碳钢则利用喷射成形工艺冷却速度大的特点细化了晶粒,减小了珠光体的片间距,提高了硬度与强度,同时降低了元素偏析程度。同时发现:在铸态1.8C-1.6Al超高碳钢中和在喷射成形1.8C-1.6Al超高碳钢中Al在晶内的分布情况正好相反,由反偏析转变为正偏析。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号