首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peanut skin, when treated with formaldehyde to polymerize tannins, is a highly efficient substrate for removal of many heavy metal ions from aqueous waste solutions. The ions Ag1+, Cd2+, Cr6+, Cu2+, Hg2+, Ni2+, Pb2+, Zn2+, as well as Ca2+ and Mg2+, were contacted with formaldehyde-treated peanut skin. Quantitative removal could be achieved with Ag1+, Cd2+, Cu2+, Hg2+, Pb2+, and Zn2+. Capacity of the substrate for ions was promising for Pb2+ (2.1 meq/g substrate), Cu2+ (3.0 meq/g), and Cd2+ (1.3 meq/g). Sorption from a solution containing Cd2+, Cu2+, Hg2+, Ni2+, Pb2+, Zn2+, on a packed column of formaldehyde-treated peanut skin indicated that Hg2+, Pb2+, and Cu2+ were rapidly and completely bound to the packing, while Cd2+, Ni2+, and Zn2+ were poorly bound until the preferred ions had been removed from solution.  相似文献   

2.
A copolymer (4‐HAOF) prepared by condensation of 4‐hydroxyacetophenone and oxamide with formaldehyde in the presence of an acid catalyst proved to be a selective chelating ion‐exchange copolymer for certain metals. Chelating ion‐exchange properties of this copolymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+, and Hg2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal‐ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+ ions than for Co2+, Zn2+, Cd2+, Pb2+, Cu2+, Ni2+, and Hg2+ ions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 787–790, 2003  相似文献   

3.
《分离科学与技术》2012,47(4):854-873
Abstract

Metal ion binding with a flowing system to a biosorbent comprised of cultured cell-wall fragment within a polysilicate matrix has been investigated. Solutions containing 0.10 mM Pb2+, Cu2+, Ni2+, Cd2+, and Zn2+ were exposed to the material in combinations of two, three, and five metals while simultaneously monitoring the concentration of all metals in the effluent stream. A relative affinity order of Pb2+ > Cu2+ >> Zn2+ ≈ Cd2+ > Ni2+ was determined when all five metal ions were exposed to the material. Lower-affinity metal ions were exposed to the material sequentially. Both metal-specific and common binding sites were observed for each metal ion. The presence of both binding sites that are common to all metal ions investigated and sites that appear to be unique for each metal ion could significantly impact the utility of single-metal ion studies on the application of such biosorbents for the selective removal of metal ions from natural water.  相似文献   

4.
The chelating polymer-bearing triazolylazophenol moiety as the functional group was synthesized, its metal adsorption properties for 6 divalent heavy metal ions; Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were investigated. The capacity of the polymer for Cu2+ achieved 8.7 mEq/g in pH 5.3 solution. The polymer showed remarkable color changes from orange to red violet or blue violet with its chelations to the heavy metal ions. The metal adsorption rates of the polymer were rapid in performing complete capacity saturation of heavy metal ions in about 30 min. The capacities varied little the presence of alkali or alkaline earth metal ions in solutions. The perfect elimination of metals from the polymer–M2+ chelates were performed with mineral acid solutions. The metal ions; Cu2+ and Ni2+ in plating-process solutions were effectively removed by the chelating polymer, and the polymer can be practically used for the removal of these ions from waste water.  相似文献   

5.
A new heteropolyacid-based cation exchanger zirconium(IV) selenomolybdate has been synthesized, characterized using I.R., X-ray, TGA, DTA techniques. Its composition was found to be Zr:Se:Mo::2.5:0.7:1.6 and it is quite chemically stable. It exhibits 0.94 meq/g ion-exchange capacity for Na+ ions. Its distribution behavior for 16 metal ions has been studied and its utility has been employed by achieving separations Zn2+–Cd2+, Zn2+–Co2+, Ni2+–Cd2+and Ni2+–Co2+ on its column.  相似文献   

6.
This article reports the synthesis, characterization, and ion exchange properties of a terpolymer. The terpolymer resin salicylic acid‐diaminonaphthalein‐formaldehyde (SDNF) was synthesized by the condensation of salicylic acid and diaminonaphthalein with formaldehyde in the presence of a hydrochloric acid catalyst. Terpolymer resin was characterized by elemental analysis, infrared (IR) spectroscopy, nuclear magnetic resonance spectroscopy, and UV–Visible spectral studies. The number average molecular weight of the resin was determined by nonaqueous conductometric titration. Chelation ion exchange properties have also been studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+ ions employing a batch equilibrium method. It was employed to study the selectivity of metal ion uptake involving the measurements of distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over wide pH range and in a media of various ionic strengths. The terpolymer showed higher selectivity for Fe3+, Cu2+, and Ni2+ions than for Co2+, Zn2+, Cd2+, and Pb2+ ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Ni2+‐imprinted monolithic column was prepared for the removal of nickel ions from aqueous solutions. N‐Methacryloyl‐L ‐histidine was used as a complexing monomer for Ni2+ ions in the preparation of the Ni2+‐imprinted monolithic column. The Ni2+‐imprinted poly(hydroxyethyl methacrylate‐N‐methacryloyl‐L ‐histidine) (PHEMAH) monolithic column was synthesized by bulk polymerization. The template ion (Ni2+) was removed with a 4‐(2‐pyridylazo) resorcinol (PAR):NH3? NH4Cl solution. The water‐uptake ratio of the PHEMAH–Ni2+ monolith increased compared with PHEMAH because of the formation of nickel‐ion cavities in the polymer structure. The adsorption of Ni2+ ions on both the PHEMAH–Ni2+ and PHEMAH monoliths were studied. The maximum adsorption capacity was 0.211 mg/g for the PHEMAH–Ni2+ monolith. Fe3+, Cu2+, and Zn2+ ions were used as competitive species in the selectivity experiments. The PHEMAH–Ni2+ monolithic column was 268.8, 25.5, and 10.4 times more selective than the PHEMAH monolithic column for the Zn2+, Cu2+, and Fe3+ ions, respectively. The PHEMAH–Ni2+ monolithic column could be used repeatedly without a decrease in the Ni2+ adsorption capacity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Monte Carlo molecular modelling simulations were performed to investigate the swelling and shrinking behaviour of hydrated Wyoming-type montmorillonite (MMT) including different counterions. MCY, TIP4P, and SPC/E water and potential models were employed to Li- and Na-montmorillonite. The simulation data with the SPC/E water model fitted the experimental swelling curves. The agreement between our results and available experimental and/or preceding theoretical results allow us to predict the swelling and shrinking behaviour of MMT including other cations such as some heavy metal ions (Ni2+, Zn2+ and Pb2+). The hysteresis between swelling and shrinking is due to the different mechanism of adsorption and desorption by breaking and re-formation of hydrogen bonds between the water molecules.  相似文献   

9.
The effects of different parameters such as time, concentration, pH and temperature, on metal ion retention properties of the polymer have been investigated. Metal ion adsorption kinetics, isotherms and thermodynamics have been studied. A plausible mechanism for mercury ion retention has been suggested. Mercuric ion has been isolated quantitatively from various synthetic mixture containing metal ions (Ni2+, Cd2+, Pb2+ and Zn2+).  相似文献   

10.
《分离科学与技术》2012,47(13):2709-2719
Abstract

The transport of cadmium ions from hydrochloric acid solutions across a bulk liquid membrane by using dicyclohexyl‐18‐crown‐6 (DC18C6) dissolved in dichloromethane has been studied at 25°C. The effect of the fundamental parameters influencing the transport, e.g., hydrochloric acid concentration in the feed phase, DC18C6 concentration and the type of diluent used in the membrane and time of transport have been investigated. The transported amount of the cadmium ions (initial concentration 0.001 M) from a 6 M hydrochloric acid solution across a dichloromethane solution of DC18C6 (0.05 M) into distilled water (receiving phase) was found to be 98.3 (±1.8) percent after 6 h. The selectivity and efficiency of the method toward cadmium ions were tested by performing the competitive transport experiments on the mixtures containing Cd2+, Ni2+, Mn2+, Co2+, Zn2+, Pb2+, and Fe2+ ions. The best selectivity was found for the recovery of the cadmium ions from its mixture with Ni2+, Mn2+, Co2+, and Pb2+ ions. Thus, the method can be proposed for the application in cadmium recovery from the sources containing these ions such as spent rechargeable nickel‐cadmium batteries.  相似文献   

11.
Poly(2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) [P(AGA‐co‐APSA)] was synthesized by radical polymerization in an aqueous solution. The water‐soluble polymer, containing secondary amide, hydroxyl, carboxylic, and sulfonic acid groups, was investigated, in view of their metal‐ion‐binding properties, as a polychelatogen with the liquid‐phase polymer‐based retention technique under different experimental conditions. The investigated metal ions were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Cr3+, and these were studied at pHs 3, 5, and 7. P(AGA‐co‐APSA) showed efficient retention of all metal ions at the pHs studied, with a minimum of 60% for Co(II) at pH 3 and a maximum close to 100% at pH 7 for all metal ions. The maximum retention capacity (n metal ion/n polymer) ranged from 0.22 for Cd2+ to 0.34 for Ag+. The antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ polymer–metal complexes was studied, and P(AGA‐co‐APSA)–Cd2+ presented selective antibacterial activity for Staphylococcus aureus with a minimum inhibitory concentration of 2 μg/mL. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Interaction of metal ions with montmorillonite and vermiculite   总被引:1,自引:0,他引:1  
The behaviour of montmorillonite and vermiculite toward adsorption of Cd2+, Pb2+, Zn2+, Mn2+, Cu2+ and Zn2+ was compared. In general, the uptake of metal ions on both clay minerals decreased with decreasing of pH and in the presence of ligands forming stable complexes. Metal ion retention on montmorillonite was less affected by the competition of sodium ions at high ionic strengths with respect to vermiculite. On the other hand, the total capacity of vermiculite with respect to the investigated metal ions was found to be much higher than that of montmorillonite, whereas the order of affinity of the metal ions for the two clay minerals was similar, i.e.: Pb2+ = Cd2+ < Cu2+ < Zn2+ < Mn2+ < Ni2+ for montmorillonite and Pb2+ < Cu2+ < Cd2+ < Zn2+ < Ni2+ < Mn2+ for vermiculite.The similarities and differences between the two clay minerals were also investigated by principal component analysis and hierarchical cluster analysis.The results of this study may be used to predict the uptake efficiency of these adsorbents in view of their application for the removal of metal ions from contaminated effluents. The choice of vermiculite or montmorillonite for the uptake of metal ions or other elements will depend on the composition of the effluent to be treated.  相似文献   

13.
《分离科学与技术》2012,47(7):965-974
Terpolymer resins have been synthesized by condensation of p-nitrophenol, triethylenetetramine, and formaldehyde in the presence of 2 M NaOH as a catalyst with different molar proportions of monomers. Newly synthesized terpolymers were proved to be selective chelation ion exchangers for metal ions like Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Hg2+, and Pb2+. A batch equilibrium study was carried out over a wide pH range, shaking time, and in media of various ionic strengths of different electrolytes and shows higher selectivity for Hg2+, Cd2+, and Pb2+. Distribution ratios of metal ions were found to be increased by increasing pH of solutions; hence the resins can be used to recover certain metals from waste solutions and removal of iron from boiler water.  相似文献   

14.
Single and binary metal systems were employed to investigate the removal characteristics of Pb2+, Cu2+, Cd2+, and Zn2+ by Chlorella sp. HA-1 that were isolated from a CO2 fixation process. Adsorption test of single metal systems showed that the maximum metal uptakes were 0.767 mmol Pb2+, 0.450 mmol Cd2+, 0.334 mmol Cu2+ and 0.389 mmol Zn2+ per gram of dry cell. In the binary metal systems, the metal ions on Chlorella sp. HA-1 were adsorbed selectively according to their adsorption characteristics. Pb2+ ions significantly inhibited the adsorption of Cu2+, Zn2+, and Cd2+ ions, while Cu2+ ions decreased remarkably the metal uptake of Cd2+ and Zn2+ ions. The relative adsorption between Cd2+ and Zn2+ ions was reduced similarly by the presence of the other metal ions.  相似文献   

15.
The chelation behavior of poly(β‐diketone), polymer I, and poly(β‐diketone) oxime, polymer II, toward the divalent metal ions, Cu2+, Zn2+, Ni2+, and Cd2+, and the trivalent lanthanide metal ions, La3+, Nd3+, Sm3+, Gd3+, and Tb3+ was investigated by a batch equilibration technique as a function of contact time, pH, and counter ion. Polymer II exhibited improved chelation characteristics toward lanthanide metal ions in comparison with polymer I and the metal‐ion uptake follows the order Tb3+ ≈ Gd3+ ≈ Sm3+ > Nd3+ ≈ La3+. On the other hand, polymer I showed relatively higher capacity than polymer II, toward the investigated divalent metal ions, where the metal‐ion uptake follows the order Cu2+ > Cd2+ ≈ Zn2+ > Ni2+. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Langmuir monolayers containing surface carboxylic acid head groups were examined in order to characterize their selectivity to metal ion adsorption. Experimental data of ion adsorption obtained by surface isotherms and FTIR spectroscopy were analyzed using a thermodynamic-and-electrochemical model. Among bivalent ions examined (Cr2+, Pb2+, Cu2+, Cd2+, Zn2+, Ca2+, Ni2+, and Ba2+), Langmuir monolayers showed the highest selectivity to chromium ions. In addition, it was found that adsorption constants of the surface ions are quite different from binding constants of the bulk ions. The results show important implications to sensing and separating metal ions by the use of acidic supramolecular materials.  相似文献   

17.
《分离科学与技术》2012,47(2):256-261
A selective and reliable method has been developed for the extraction and separation of mercuric ion with cross-linked graft copolymer of acrylic acid based on sorption-desorption studies. The graft copolymer acts as an ion exchanger. The physico-chemical properties of the exchanger, and optimum pH, time, and temperature for Hg2+ adsorption were determined. Metal ion adsorption kinetics, isotherms, and thermodynamics have been studied. A plausible mechanism for mercury ion extraction has been suggested. Mercuric ion has been separated quantitatively from various synthetic mixtures containing metal ions (Ni2+, Cd2+, Pb2+, and Zn2+).  相似文献   

18.
A novel semisquarylium dye was synthesized by the reaction between 3,4-dibutoxy-3-cyclobutene-1,2-dione and a benzothiazolium salt and its metal ion sensing properties were investigated using absorption and emission spectroscopy. These misquarylium exhibited high selectivity for Hg2+ ions, as compared with Ca2+, Pb2+, Al3+, Ce2+, Ba2+, Ni2+, Cd2+, Zn2+ and Mg2+ ions in DMSO/H2O (9:1, v/v), which was attributed to the formation of a 2:1 BSQ:Hg2+ coordination complex, the formation of which was supported by the calculated geometry of the complex.  相似文献   

19.
The mechanochemical solid-phase reactions of humic acid with Cu2+, Ni2+, and Cd2+ metal ions were studied. The analysis of the mineral composition of humic acids by atomic emission spectrometry showed an increase in the concentrations of Cu2+, Ni2+, and Cd2+ ions after mechanical treatment.  相似文献   

20.
The results of studies of kinetic regularities of sorption of heavy-metals ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Mn2+) by a sorbent based on calcium hydrosilicate (hereinafter referred to as silicate sorbent) produced from manmade waste formed during the processing of the boron-containing mineral raw materials (boron–gypsum) have been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号