首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
段日雄  糜裕宏  吴小青 《山西煤炭》2003,23(2):21-23,30
对高灰熔融性淮南煤进行了添加助熔剂与配煤降低灰熔点的研究,经研究表明,添加20%以上助熔剂CaO可把高灰熔融性淮南煤灰熔点降至l360℃左右;配煤可以显著降低高灰熔融性煤的灰熔点,配合煤灰熔点变化是非加和性的。一般在淮南煤中掺配70%C、A、D等低灰熔点煤可使煤灰熔点降至德士古气化液态排渣操作温度l380℃.煤中灰成分对灰熔点有很大影响,配煤的灰成分具有加和性。  相似文献   

2.
针对晋城煤灰熔融性温度较高的特点,为使其满足液态排渣气化工艺需求,利用添加石灰石进行降低晋城煤灰熔融性温度试验,根据灰比及灰中氧化钙(CaO)含量确定适宜的添加比例,使煤灰熔融性温度降低至气化炉能够接受的程度,并测试添加适宜比例石灰石后煤样的黏温特性。试验结果表明:煤中灰成分对晋城煤灰熔融性有较大影响,添加不同量的CaO助熔剂对晋城煤灰的灰熔融性、黏度特性影响显著。随着CaO助熔剂剂量的增加,煤的灰熔融性温度不断降低,但降至一定的温度值后,随着助熔剂量的增加其灰熔融性温度变化不大。通过添加CaO助熔剂,在保证进入干煤粉气化炉的灰分和发热量满足要求前提下,可降低晋城煤的灰熔融性温度,满足干煤粉气化炉的技术要求。  相似文献   

3.
以高灰熔融性大同石炭纪煤为研究对象,探究其对气流床气化炉的适应性。为使其满足气流床气化炉液态排渣技术要求,通过添加助熔剂降低大同煤灰熔融温度,并根据石灰石添加量以及灰中CaO含量对煤灰熔融性温度影响确定适宜的添加比例,测试添加适宜比例石灰石后煤样的黏温特性。试验结果表明:煤中灰成分对煤灰熔融性温度有很大影响,随着助熔剂CaO量的增加,煤灰熔融性温度不断降低,当助熔剂石灰石添加量为10%时最适宜;助熔剂CaO对煤灰黏温特性也有很大影响,当石灰石添加量为10%时,随着温度提高则煤灰的黏度不断降低,当炉内温度为1 540℃时黏度降低至25Pa·s,此时的煤灰具有很好的流动性,可满足气流床气化的技术要求。  相似文献   

4.
苏鑫  李发林  王国房 《煤质技术》2015,(3):19-22,42
为降低不连沟煤的灰熔融性,进行了配煤试验和加入不同助熔剂的试验,得到了较为合理的操作方法:利用A煤可在配入量为60%时有效降低不连沟煤的灰熔融性,利用CaO作为助熔剂可在干基煤添加量为2%时将原煤的流动温度降低至1390℃。由配煤添加助熔剂以降低灰熔融性的试验可知,不同的助熔剂对于2种配煤各有不同的作用结果。通过对煤中灰分的理想化假设,计算出理想灰分的硅铝比和硅钙比分别为1.18、1.07,以此推算并解释不同助熔剂在降低煤灰融性方面的作用机理,指出推算结果与试验结果基本相符。  相似文献   

5.
配煤是降低高灰熔融性煤灰熔点的有效手段之一。本文选用低灰熔点的神木西沟煤(A煤样)按一定比例与高灰熔点的延安车村二号矿煤(B煤样)和神木永兴沟煤(C煤样)相配,研究了配煤对煤灰熔融特性的影响,利用X射线衍射(XRD)和电镜扫描(SEM)考察了配煤煤灰中矿物种类及外貌的变化。试验结果表明,A煤样分别在B煤样和C煤样中添加60%和10%时可以使配煤的软化温度(ST)1350℃,满足气化炉液态排渣的要求;配煤灰熔点的改变不是两种单煤灰熔点简单的加和而是非线性的。  相似文献   

6.
配煤降低高灰熔融性淮南煤灰熔点的研究   总被引:15,自引:0,他引:15  
李寒旭  陈方林 《煤炭学报》2002,27(5):529-533
对高灰熔融性淮南煤和低灰熔融性煤进行了配煤降低灰熔点的研究。研究表明,配煤可以显著降低高灰熔融性煤的灰熔点,降低或免去添加助熔剂,配合煤灰熔点变化并不是两种煤的灰熔点加和值,而是非加和性的。煤中灰成分对灰熔点有很大影响,配煤的灰成分具有加和性。添加适当的助熔剂是高灰熔融性煤的配煤制浆的较佳选择。配煤的制浆浓度是非加和性的,利用两种煤的优势可以有效地提高难成浆煤种的制浆浓度,一般可以提高3%-5%。  相似文献   

7.
配煤对煤灰熔点和水煤浆性能影响的研究   总被引:3,自引:1,他引:3  
配煤可以显著降低高灰熔融性煤的灰熔点 ,降低或免去添加助熔剂 ,配煤灰熔点变化并不是两种煤的灰熔点加和值 ,配煤的灰成分具有加和性。添加适当的助熔剂是高灰熔融性煤的配煤制浆的较佳选择。利用淮南煤配煤制浆可以有效提高难成浆煤种的制浆浓度 ,一般可以提高 3%~ 5 %。  相似文献   

8.
基于鄂尔多斯市各地区煤质特性指标差异大、煤炭资源优势互补的特点,对鄂尔多斯市优质低灰熔融温度煤与高灰熔融温度煤、低发热量煤与高发热量煤、高硫煤与低硫煤进行了实验室的配煤试验研究。试验研究结果表明:低灰熔融温度优质煤配入少量高灰熔融温度煤,其煤灰熔融温度显著提高;采用3种原料煤配煤有助于显著降低高硫煤中的全硫含量。  相似文献   

9.
对火力发电厂所燃用的神华混煤和准格尔煤的煤灰熔融性等煤质特性做了初步分析,并对未掺烧前发生的因煤灰熔融温度低而导致的事故进行分析及提出应对策略。同时,利用神华混煤与准格尔煤性质稳定的优点,通过对掺烧后的入炉煤干基灰分与煤灰熔融性的关系进行实验统计和分析,提出以入炉煤千基灰分对煤灰熔融性进行监控和掺烧煤配比的调整,实现锅炉的安全稳定经济运行。  相似文献   

10.
液态排渣的气化技术对原料煤的灰熔融性温度有一定的要求,添加助熔剂是降低煤灰熔融性温度的有效方法之一。该文介绍了添加氧化钙(CaO)降低煤灰熔融性温度的条件试验,表明添加氧化钙能使煤的灰熔融性软化温度(ST)降低到一定的水平,但具体的降低幅度和添加量与煤中的灰分含量和灰成分有关。  相似文献   

11.
动力配煤灰熔融性温度的计算   总被引:1,自引:0,他引:1  
采用单煤灰熔融性温度加权平均来计算动力配煤的灰熔融性温度, 在建立数学公式过程中考虑了灰分产率的影响。用该方法计算的理论值与实测值误差很小, 比未考虑灰分产率的数学公式有更高的准确度。  相似文献   

12.
介绍了补连塔煤的煤质特征,对其水分、灰分、硫分、发热量、煤灰成分及煤灰熔融性等进行分析,并对其适宜的气化路线进行探讨。结果表明:补连塔煤属于变质程度较低煤种,为中高全水分、低灰、低硫、低灰熔融性煤,属于较低流动温度灰,适合于固定床气化、流化床气化和气流床气化。  相似文献   

13.
《煤炭技术》2017,(9):292-294
煤灰组成对煤的熔融性有着及其重要的影响。选取尔林兔、王家塔和大柳塔3种煤两两互配得到30组煤样,研究了煤灰不同成分对其熔融温度的影响,结果表明:Al_2O_3、Fe_2O_3和TiO_2均可提高煤灰的流动温度,而SiO_2、CaO和MgO可降低煤灰流动温度。  相似文献   

14.
煤的灰熔点对工业用煤有重要的影响,尤其是对于锅炉燃烧,选用了准格尔煤田的17种煤样按照国家标准做灰成分分析,并测得其灰熔点温度。运用数学方法将灰熔点与煤灰成分相关联,通过煤灰总酸总碱和酸碱比含量及主要矿物成分影响灰熔点做具体分析,对准格尔煤田的实际生产具有重要的指导作用。  相似文献   

15.
简述新疆达拉布特一号矿地质概况,结合煤类判别对其B13煤层和B14煤层的灰分、硫分、发热量、煤灰成分、煤灰熔融特性、微量元素等主要煤质特征进行分析;基于固定床、流化床、气流床气化用煤对煤质要求,探析达拉布特一号矿区煤的气化适应性,以期清洁高效利用该矿主采煤层资源。研究结果表明:达拉布特一号矿主采煤层煤炭以长焰煤为主,局部位置有分布不均的不黏煤,B13煤层和B14煤层主要为低灰、特低硫、中高发热量、低磷、特低氟、特低氯煤,主采煤层煤灰成分以SiO_2为主,其次为CaO和Al_2O_3,煤灰熔融性属于较低软化温度灰以及较低流动温度灰;B13、B14煤层煤的灰分与硫分均较低,微量元素含量较低可有利于气化净化及废水的处理,煤灰熔融性温度较低可满足气化炉液态排渣的要求,其适合作为气化用煤。  相似文献   

16.
根据煤气化、煤直接液化、热解分质利用等不同转化工艺对原料煤的煤质要求,开展黑岱沟煤矿和哈尔乌素煤矿煤质特征的研究及其与转化工艺的适配性调研,可最大限度地提高矿山煤炭资源利用率与经济效益。通过对黑岱沟及哈尔乌素露天煤矿的地勘数据整理与煤层样品实测数据研究,结合开采方式和洗选工艺,采集代表性样品对比分析2个露天矿不同台阶煤层样的煤质特征。研究表明:哈尔乌素及黑岱沟露天煤矿的煤质均较好,属低硫、低磷、高灰熔融性、高挥发分和洗选后发热量较高的长焰煤; 2个煤矿煤层煤的灰分较高,可通过洗选方式降低煤中灰分及有害元素含量;其煤灰成分主要以二氧化硅和三氧化二铝为主,煤灰熔融性温度较高,可作为液态排渣气化等用煤;利用周边侏罗纪煤配煤或添加助熔剂,可改善其煤灰黏温曲线。  相似文献   

17.
三元配煤矿物因子对煤灰熔融特性影响及熔融机理   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究配煤中矿物组成对煤灰熔融特性的影响,选取煤灰化学组成和煤灰熔融温度差异较大的3个原煤a,b,c进行三元配煤实验,利用X射线衍射(XRD)及X射线荧光光谱法(XRF)分别测定了煤样矿物组成和煤灰化学成分,并对高温煤灰熔融机理进行研究。结果表明:引入矿物因子(MF)来表征煤样矿物组成(耐熔矿物、助熔矿物)对高温煤灰熔融特性的影响具有一定的可靠性。高温下低灰熔融温度矿物钙长石钙含量的升高与高灰熔融温度莫来石矿物含量的减少共同导致了煤灰熔融温度的降低;在煤灰流动温度左右,钙长石物相最强衍射峰强度的高低以及低温共熔物相对含量的高低与煤灰流动温度呈现一定的负相关性,石英和莫来石则相反。  相似文献   

18.
研究晋城无烟煤用于液态排渣气化工艺时灰熔融温度的适应性及其助熔调控方法,可为其液态排渣气化技术的现场应用提供基础支撑。选取晋城10个矿区的无烟煤,探究煤灰化学组成及酸碱比等参数对晋城无烟煤灰熔融温度的影响,采用添加碱性助熔剂或掺配高碱性氧化物含量煤的方式研究晋城无烟煤的助熔调控方法。结果显示:晋城无烟煤灰熔融温度高的原因在于灰组分中酸性氧化物含量高(80%~90%)、碱性氧化物含量低(9%~18%)、酸碱比高(4.6~7.6);煤灰熔融流动温度均在1 500℃以上,需添加石灰石类的碱性助熔剂或掺配高钙煤以用于晋城无烟煤的液态排渣气化技术。添加石灰石和配煤的实验显示:在晋城无烟煤中添加2%~4%的石灰石或掺配40%的神木煤即可将流动温度降低至1 400℃以下,从而满足液态排渣气化技术对晋城无烟煤灰熔融温度的要求。  相似文献   

19.
对准东煤进行不同种类和比例的配煤,利用CCD(电荷耦合元件)相机监测系统和烧结探针对混烧灰的烧结熔融特性进行实时在线监测。研究结果表明:准东煤和北塔山煤、准东煤和乌东煤都分别按照9∶1,8∶2和7∶3的质量比进行混合可以抑制灰块烧结熔融,起到较好的防结渣效果。烧结灰块的横截面具有3层颜色和烧结程度差异显著的层状结构,由内层到外层烧结程度逐渐增加,且随着配煤比例的提高,最外层的熔融物质减少。同时利用基于Matlab软件开发的GUI数字图像处理系统得到各烧结灰块的高度和面积收缩率,在烧结最终时刻纯准东煤灰块的高度和面积收缩率分别为0.125和0.225。配煤影响烧结灰块的高度和横截面积变化,且随配煤比例的提高,最终时刻灰块的高度和面积收缩率都逐渐减小。利用XRD(X射线衍射)技术分析发现,配煤的种类和比例影响矿物相的转化,但是对外层的矿物质影响较小,外层矿物相主要成分均为钙长石(CaAl_2Si_2O_8)。进行SEM(扫描电镜)分析,发现配煤后烧结灰块外层的孔结构直径有所减小,外层基质呈现出光滑且致密的结构。同时通过EDX(能量色散X射线光谱)分析了烧结灰块各层横截面的化学组成,各烧结灰块表面由内层到外层,Na,K和S元素的含量总体上呈降低趋势,而Ca,Al,Si元素含量则呈增加趋势,配煤后碱金属元素蒸发减少。  相似文献   

20.
采用控制变量法逐个改变模拟灰中各化学组成含量,通过灰熔融性试验来研究府谷煤灰中SiO2、A12O3、Fe2O3、MgO和CaO对灰熔融性的影响,并利用XRD图谱对添加不同含量CaO的府谷煤灰中物相组分进行了分析.结果表明,Fe2O3和MgO能降低灰的熔融温度,SiO2、Al2 O3和CaO对灰熔融点的具有双重影响性.CaO在一定范围内可显著降低府谷煤灰的熔融温度,在加热过程中与莫来石、SiO2等反应生成多种高含钙化合物,各物质之间会形成低温共熔化合物,造成灰熔点降低;当钙含量过高时,CaO与方石英、钙长石反应生成假硅灰石、钙黄长石,使灰熔点升高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号