首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent graphics processing units (GPUs) can be used for general purpose parallel computation. Ant colony optimisation (ACO) approaches have been introduced as nature-inspired heuristics to find good solutions of the travelling salesman problem (TSP). In ACO approaches, a number of ants traverse the cities of the TSP to find better solutions of the TSP. The ants randomly select next visiting cities based on the probabilities determined by total amounts of their pheromone spread on routes. The main contribution of this paper is to present sophisticated and efficient implementation of one of the ACO approaches on the GPU. In our implementation, we have considered many programming issues of the GPU architecture including coalesced access of global memory and shared memory bank conflicts. In particular, we present a very efficient method for random selection of next cities by a number of ants. Our new method uses iterative random trial which can find next cities in few computational costs with high probability. This idea can be applied in not only GPU implementation but also CPU implementation. The experimental results on NVIDIA GeForce GTX 580 show that our implementation for 1002 cities runs in 8.71 s, while the CPU implementation runs in 190.05 s. Thus, our GPU implementation attains a speed-up factor of 22.11.  相似文献   

2.
张宇  张延松  陈红  王珊 《软件学报》2016,27(5):1246-1265
通用GPU因其强大的并行计算能力成为新兴的高性能计算平台,并逐渐成为近年来学术界在高性能数据库实现技术领域的研究热点.但当前GPU数据库领域的研究沿袭的是ROLAP(relational OLAP)多维分析模型,研究主要集中在关系操作符在GPU平台上的算法实现和性能优化技术,以哈希连接的GPU并行算法研究为中心.GPU拥有数千个并行计算单元,但其逻辑控制单元较少,相对于CPU具有更强的并行计算能力,但逻辑控制和复杂内存管理能力较弱,因此并不适合需要复杂数据结构和复杂内存管理机制的内存数据库查询处理算法直接移植到GPU平台.提出了面向GPU向量计算特性的混合OLAP多维分析模型semi-MOLAP,将MOLAP(multidimensionalOLAP)模型的直接数组访问和计算特性与ROLAP模型的存储效率结合在一起,实现了一个基于完全数组结构的GPU semi-MOLAP多维分析模型,简化了GPU数据管理,降低了GPU semi-MOLAP算法复杂度,提高了GPU semi-MOLAP算法的代码执行率.同时,基于GPU和CPU计算的特点,将semi-MOLAP操作符拆分为CPU和GPU平台的协同计算,提高了CPU和GPU的利用率以及OLAP的查询整体性能.  相似文献   

3.
With fierce competition between CPU and graphics processing unit (GPU) platforms, performance evaluation has become the focus of various sectors. In this paper, we take a well‐known algorithm in the field of biosequence matching and database searching, the Smith–Waterman (S‐W) algorithm as an example, and demonstrate approaches that fully exploit its performance potentials on CPU, GPU, and field‐programmable gate array (FPGA) computing platforms. For CPU platforms, we perform two optimizations, single instruction, multiple data and multithread, with compiler options, to gain over 70 × speedups over naive CPU versions on quad‐core CPU platforms. For GPU platforms, we propose the combination of coalesced global memory accesses, shared memory tiles, and loop unfolding, achieving 50 × speedups over initial GPU versions on an NVIDIA GeForce GTX 470 card. Experimental results show that the GPU GTX 470 gains 12 × speedups, instead of 100 × reported by some studies, over Intel quadcore CPU Q9400, under the same manufacturing technology and both with fully optimized schemes. In addition, for FPGA platforms, we customize a linear systolic array for the S‐W algorithm in a 45‐nm FPGA chip from Xilinx (XC6VLX760), with up to 1024 processing elements. Under only 133 MHz clock rate, the FPGA platform reaches the highest performance and becomes the most power‐efficient platform, using only 25 W compared with 190 W of the GPU GTX 470. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The computing power of graphics processing units (GPU) has increased rapidly, and there has been extensive research on general‐purpose computing on GPU (GPGPU) for cryptographic algorithms such as RSA, Elliptic Curve Cryptosystem (ECC), NTRU, and Advanced Encryption Standard. With the rise of GPGPU, commodity computers have become complex heterogeneous GPU+CPU systems. This new architecture poses new challenges and opportunities in high‐performance computing. In this paper, we present high‐speed parallel implementations of the rainbow method based on perfect tables, which is known as the most efficient time‐memory trade‐off, in the heterogeneous GPU+CPU system. We give a complete analysis of the effect of multiple checkpoints on reducing the cost of false alarms and take advantage of it for load balancing between GPU and CPU. For GTX460, our implementation is about 1.86 and 3.25 times faster than other GPU‐accelerated implementations, RainbowCrack and Cryptohaze, respectively, and for GTX580, 1.53 and 2.40 times faster. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Development of parallel codes that are both scalable and portable for different processor architectures is a challenging task. To overcome this limitation we investigate the acceleration of the Elastodynamic Finite Integration Technique (EFIT) to model 2-D wave propagation in viscoelastic media by using modern parallel computing devices (PCDs), such as multi-core CPUs (central processing units) and GPUs (graphics processing units). For that purpose we choose the industry open standard Open Computing Language (OpenCL) and an open-source toolkit called PyOpenCL. The implementation is platform independent and can be used on AMD or NVIDIA GPUs as well as classical multi-core CPUs. The code is based on the Kelvin–Voigt mechanical model which has the gain of not requiring additional field variables. OpenCL performance can be in principle, improved once one can eliminate global memory access latency by using local memory. Our main contribution is the implementation of local memory and an analysis of performance of the local versus the global memory using eight different computing devices (including Kepler, one of the fastest and most efficient high performance computing technology) with various operating systems. The full implementation of the code is included.  相似文献   

6.
张鸿骏  武延军  张珩  张立波 《软件学报》2020,31(10):3038-3055
散列表(hash table)作为一类根据关键码值(key value)提供高效数据访问的数据索引结构,其广泛应用于各类计算机应用中,尤其是在对性能要求极高的系统软件、数据库以及高性能计算领域.在网络、云计算和物联网服务方面,以散列表为核心结构已经成为缓存系统的重要系统组件.然而,随着大规模数据量的大幅度增加,以多核CPU为核心设计散列表结构的系统已经逐渐出现性能瓶颈,亟需进一步改进散列表的高性能和可扩展性.随着通用图形处理器(graphic processing unit,简称GPU)的日益普及以及硬件计算能力和并发性能的大幅度提升,各类以并行计算为核心的系统软件任务在GPU上进行了优化设计并得到可观的性能提升.由于存在稀疏性和随机性,采用现有散列表的并行结构直接在GPU上应用势必会带来高频次的内存访问和频繁的总线数据传输,影响了散列表在GPU上的性能发挥.重点分析了缓存系统中散列表索引的内存访问、命中率与索引开销,提出并设计了一种适应GPU的混合访问缓存索引框架CCHT(cache cuckoo hash table),提供了两种适应不同命中率和索引开销要求的缓存策略,允许写入与查询操作并发执行,最大程度地利用了GPU硬件的计算性能与并发特性,减少了内存访问与总线传输.通过在GPU硬件上的实现与实验验证,CCHT在保证缓存命中率的同时,性能优于其他用于缓存索引的散列表.  相似文献   

7.
The Lattice Boltzmann method (LBM) for solving fluid flow is naturally well suited to an efficient implementation for massively parallel computing, due to the prevalence of local operations in the algorithm. This paper presents and analyses the performance of a 3D lattice Boltzmann solver, optimized for third generation nVidia GPU hardware, also known as ‘Kepler’. We provide a review of previous optimization strategies and analyse data read/write times for different memory types. In LBM, the time propagation step (known as streaming), involves shifting data to adjacent locations and is central to parallel performance; here we examine three approaches which make use of different hardware options. Two of which make use of ‘performance enhancing’ features of the GPU; shared memory and the new shuffle instruction found in Kepler based GPUs. These are compared to a standard transfer of data which relies instead on optimized storage to increase coalesced access. It is shown that the more simple approach is most efficient; since the need for large numbers of registers per thread in LBM limits the block size and thus the efficiency of these special features is reduced. Detailed results are obtained for a D3Q19 LBM solver, which is benchmarked on nVidia K5000M and K20C GPUs. In the latter case the use of a read-only data cache is explored, and peak performance of over 1036 Million Lattice Updates Per Second (MLUPS) is achieved. The appearance of a periodic bottleneck in the solver performance is also reported, believed to be hardware related; spikes in iteration-time occur with a frequency of around 11 Hz for both GPUs, independent of the size of the problem.  相似文献   

8.
In this paper, we propose a new parallel genome matching algorithm using graphics processing units (GPUs). Our proposed approach is based on the Aho–Corasick algorithm and it was developed based on a consideration of the architectural features of existing GPUs with a hundred or more cores. Thus, we provide an appropriate task partitioning method that runs on multiple threads and we fully utilize the cache memory and the shared memory structures available in GPUs. Especially, we propose a tiled access method for rapid data transfer from the global memory to the shared memory. We also provide new models for cache-friendly state transition table to improve performance of pattern matching operations on GPUs. The maximum throughput we achieved in various experiments was 15.3 Gbps. Moreover, we showed that our proposed design outperformed an earlier approach with a 15.4 % performance improvement.  相似文献   

9.
The possibility of porting algorithms to graphics processing units (GPUs) raises significant interest among researchers. The natural next step is to employ multiple GPUs, but communication overhead may limit further performance improvement. In this paper, we investigate techniques reducing overhead on hybrid CPU–GPU platforms, including careful data layout and usage of GPU memory spaces, and use of non-blocking communication. In addition, we propose an accurate automatic load balancing technique for heterogeneous environments. We validate our approach on a hybrid Jacobi solver for 2D Laplace’s Equation. Experiments carried out using various graphics hardware and types of connectivity have confirmed that the proposed data layout allows our fastest CUDA kernels to reach the analytical limit for memory bandwidth (up to 106 GB/s on NVidia GTX 480), and that the non-blocking communication significantly reduces overhead, allowing for almost linear speed-up, even when communication is carried out over relatively slow networks.  相似文献   

10.
Hash tables, as a type of data indexing structure that provides efficient data access based on key values, are widely used in various computer applications, especially in system software, databases, and high-performance computing field that requires extremely high performance. In network, cloud computing and IoT services, hash tables have become the core system components of cache systems. However, with the large-scale increase in the amount of large-scale data, performance bottlenecks have gradually emerged in systems designed with a multi-core CPU as the core of the hash table structure. There is an urgent need to further improve the high performance and scalability of the hash tables. With the increasing popularity of general-purpose Graphic Processing Units (GPUs) and the substantial improvement of hardware computing capabilities and concurrency performance, various types of system software tasks with parallel computing as the core have been optimized on the GPU and have achieved considerable performance promotion. Due to the sparseness and randomness, using the existing parallel structure of the hash tables directly on the GPUs will inevitably bring high-frequency memory access and frequent bus data transmission, which affects the performance of the hash tables on the GPUs. This study focuses on the analysis of memory access, hit ratio, and index overhead of hash table indexes in the cache system. A hybrid access cache indexing framework CCHT (Cache Cuckoo Hash Table) adapted to GPU is proposed and provided. The cache strategy suitable to different requirements of hit ratios and index overheads allows concurrent execution of write and query operations, maximizing the use of the computing performance and concurrency characteristics of GPU hardware, reducing memory access and bus transferring overhead. Through GPU hardware implementation and experimental verification, CCHT has better performance than other cache indexing hash tables while ensuring cache hit ratios.  相似文献   

11.
目的 近年来双目视觉领域的研究重点逐步转而关注其“实时化”策略的研究,而立体代价聚合是双目视觉中最为复杂且最为耗时的步骤,为此,提出一种基于GPU通用计算(GPGPU)技术的近实时双目立体代价聚合算法。方法 选用一种匹配精度接近于全局匹配算法的局部算法——线性立体匹配算法(linear stereo matching)作为代价聚合策略;结合线性代价聚合的原理,对其主要步骤(代价计算、均值滤波及系数求解等)的计算流程进行有针对性地并行优化。结果 对于相同的实验样本,用本文方法在NVIDA GTX780 实验平台上能在更短的时间计算出代价矩阵,与原有的CPU实现方法相比,代价聚合的效率平均有了数十倍的提升。结论 实时双目立体代价聚合方法,为在个人通用PC平台上实时获取高质量双目视觉深度信息提供了一个高效可靠的途径。  相似文献   

12.
为了提高色阶映射计算的效率,设计了基于GPU的快速色阶映射算法.首先结合基本规约算法和GPU的并行运算特征设计了基于两个核函数的最大亮度计算方法,然后通过区域中间值共享计算以像素为中心的区域平均亮度,最后针对视屏处理,提出利用纹理缓存池解决CPU读数据和GPU处理数据速度不匹配的问题,并根据像素子集最大亮度自适应地更新全局最大亮度.实验结果相对相同算法的CPU实现得到了4~5倍的速度提升,表明所提出的算法能够充分利用GPU的并行性,并减少了大量重复运算,满足实时渲染的要求,并且对不同规模的纹理具有良好的适应性.  相似文献   

13.
Sparse Cholesky factorization is the most computationally intensive component in solving large sparse linear systems and is the core algorithm of numerous scientific computing applications. A large number of sparse Cholesky factorization algorithms have previously emerged, exploiting architectural features for various computing platforms. The recent use of graphics processing units (GPUs) to accelerate structured parallel applications shows the potential to achieve significant acceleration relative to desktop performance. However, sparse Cholesky factorization has not been explored sufficiently because of the complexity involved in its efficient implementation and the concerns of low GPU utilization. In this paper, we present a new approach for sparse Cholesky factorization on GPUs. We present the organization of the sparse matrix supernode data structure for GPU and propose a queue‐based approach for the generation and scheduling of GPU tasks with dense linear algebraic operations. We also design a subtree‐based parallel method for multi‐GPU system. These approaches increase GPU utilization, thus resulting in substantial computational time reduction. Comparisons are made with the existing parallel solvers by using problems arising from practical applications. The experiment results show that the proposed approaches can substantially improve sparse Cholesky factorization performance on GPUs. Relative to a highly optimized parallel algorithm on a 12‐core node, we were able to obtain speedups in the range 1.59× to 2.31× by using one GPU and 1.80× to 3.21× by using two GPUs. Relative to a state‐of‐the‐art solver based on supernodal method for CPU‐GPU heterogeneous platform, we were able to obtain speedups in the range 1.52× to 2.30× by using one GPU and 2.15× to 2.76× by using two GPUs. Concurrency and Computation: Practice and Experience, 2013. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Graphics processor units (GPU) that are originally designed for graphics rendering have emerged as massively-parallel “co-processors” to the central processing unit (CPU). Small-footprint multi-GPU workstations with hundreds of processing elements can accelerate compute-intensive simulation science applications substantially. In this study, we describe the implementation of an incompressible flow Navier–Stokes solver for multi-GPU workstation platforms. A shared-memory parallel code with identical numerical methods is also developed for multi-core CPUs to provide a fair comparison between CPUs and GPUs. Specifically, we adopt NVIDIA’s Compute Unified Device Architecture (CUDA) programming model to implement the discretized form of the governing equations on a single GPU. Pthreads are then used to enable communication across multiple GPUs on a workstation. We use separate CUDA kernels to implement the projection algorithm to solve the incompressible fluid flow equations. Kernels are implemented on different memory spaces on the GPU depending on their arithmetic intensity. The memory hierarchy specific implementation produces significantly faster performance. We present a systematic analysis of speedup and scaling using two generations of NVIDIA GPU architectures and provide a comparison of single and double precision computational performance on the GPU. Using a quad-GPU platform for single precision computations, we observe two orders of magnitude speedup relative to a serial CPU implementation. Our results demonstrate that multi-GPU workstations can serve as a cost-effective small-footprint parallel computing platform to accelerate computational fluid dynamics (CFD) simulations substantially.  相似文献   

15.
Row-wise and column-wise prefix-sum computation of a matrix has many applications in the area of image processing such as computation of the summed area table and the Euclidean distance map. It is known that the prefix-sums of a one-dimensional array can be computed efficiently on the GPU. Hence, row-wise prefix-sums of a matrix can also be computed efficiently on the GPU by executing this prefix-sum algorithm for every row in parallel. However, the same approach does not work well for computing column-wise prefix-sums due to inefficient stride memory access to the global memory is performed. The main contribution of this paper is to present an almost optimal column-wise prefix-sum algorithm on the GPU. Quite surprisingly, experimental results using NVIDIA TITAN X show that our column-wise prefix-sum algorithm runs only 2–6% slower than matrix duplication. Thus, our column-wise prefix-sum algorithm is almost optimal.  相似文献   

16.

Assembly free FEM bypasses the assembly step and solves the system of linear equations at the element level using Conjugate Gradient (CG) type iterative solver. The smaller dense Matrix-vector Products (MvPs) are encapsulated within the CG solver and are computed either at element level or degree of freedom (DoF) level. Both these strategies exploit the computing power of GPU effectively, but the performance is lagging due to the uncoalesced global memory access on GPU. This paper proposes an improved MvP strategy in assembly free FEM, which improves the performance by coalesced global memory access using on-chip faster shared memory and using the texture cache memory on GPU. Since GPU has limited shared memory (in few KBs), the proposed technique suffers from a problem known as low occupancy. Despite the low occupancy issue, the proposed strategy outperforms both element based and DoF based MvP strategies on GPU. Numerical experiments compared with element level and DoF level strategies on GPU and found that, GPU instance of proposed MvP outperforms both strategies approximately by factor of 7 and 1.5 respectively.

  相似文献   

17.
Fast Motion Estimation on Graphics Hardware for H.264 Video Encoding   总被引:1,自引:0,他引:1  
The video coding standard H.264 supports video compression with a higher coding efficiency than previous standards. However, this comes at the expense of an increased encoding complexity, in particular for motion estimation which becomes a very time consuming task even for today's central processing units (CPU). On the other hand, modern graphics hardware includes a powerful graphics processing unit (GPU) whose computing power remains idle most of the time. In this paper, we present a GPU based approach to motion estimation for the purpose of H.264 video encoding. A small diamond search is adapted to the programming model of modern GPUs to exploit their available parallel computing power and memory bandwidth. Experimental results demonstrate a significant reduction of computation time and a competitive encoding quality compared to a CPU UMHexagonS implementation while enabling the CPU to process other encoding tasks in parallel.  相似文献   

18.
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU‐GPU systems to solve dense linear algebra problems, we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasks without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double‐precision Cholesky factorization and QR factorization. Our approach demonstrates a performance comparable to Intel MKL on shared‐memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared‐memory systems with multiple GPUs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
字符串匹配是计算科学中研究最广泛的问题之一,已成为信息检索和生物计算等领域的核心操作。然而受限于CPU的计算能力和存储器访问带宽,传统的串行字符串匹配算法难以进一步提升性能。GPU在计算能力和存储器访问带宽上有很大提升,已经在很多应用上取得了卓越成效。gAC作为一种基于GPU的并行AC算法,针对GPU的SIMT(Single-Instruction Multiple-Thread)以及合并存储器访问的技术特点,采取了减少条件分支、合并访问全局存储器等优化方法,使得在C1060GPU上的字符串扫描速度达到51Gb/s,比基于CPU的串行算法提升了28倍。  相似文献   

20.
Graphical processing units (GPUs) have recently attracted attention for scientific applications such as particle simulations. This is partially driven by low commodity pricing of GPUs but also by recent toolkit and library developments that make them more accessible to scientific programmers. We discuss the application of GPU programming to two significantly different paradigms—regular mesh field equations with unusual boundary conditions and graph analysis algorithms. The differing optimization techniques required for these two paradigms cover many of the challenges faced when developing GPU applications. We discuss the relevance of these application paradigms to simulation engines and games. GPUs were aimed primarily at the accelerated graphics market but since this is often closely coupled to advanced game products it is interesting to speculate about the future of fully integrated accelerator hardware for both visualization and simulation combined. As well as reporting the speed‐up performance on selected simulation paradigms, we discuss suitable data‐parallel algorithms and present code examples for exploiting GPU features like large numbers of threads and localized texture memory. We find a surprising variation in the performance that can be achieved on GPUs for our applications and discuss how these findings relate to past known effects in parallel computing such as memory speed‐related super‐linear speed up. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号