首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Hemodiafiltration with high‐convective volumes is associated with improved patient survival, whereby practical realization is contingent on high extracorporeal blood flow (Qb) and dialysis treatment time. However, Qb is restricted by vascular access (VA) quality and/or concerns that high Qb could damage the VA. Taking VA quality into consideration, one can investigate the relationship between Qb and VA survival. We analyzed data from 1039 patients treated by hemodiafiltration over a 21‐month period where access blood flow (Qa) measurements were also available at baseline. VA failure was defined as a surgical intervention resulting in the generation of a new VA. Qa was included as a stratification variable within a Cox regression model. A second Cox proportional hazard model with a penalized spline was used to describe the association between Qb and VA survival. Compared with Qb in the 350–357 mL/min range, a significantly higher hazard ratio (HR) for VA failure was detected for fistula only, and then only for Qb < 312 mL/min (HR: 2.361, 95% confidence interval [CI]: 1.251–4.453), Qb = 387–397 mL/min (HR: 1.920, 95% CI: 1.007–3.660) and Qb >414 mL/min (HR: 2.207, 95% CI: 1.101–4.424). Age, gender, diabetes, VA vintage, position of the VA, and arterial pressure were not significantly associated with outcome. The form of the penalized spline confirmed higher risk for VA failure for the lowest and the highest values of Qb. Taking Qa into consideration, no association was found between VA failure and Qb up to flows as high as approximately 390 mL/min.  相似文献   

2.
3.
Thrombosis is the main cause of failure of small-diameter synthetic vascular grafts when used for by-pass procedures. The development of bioresorbable vascular scaffolds with localized and sustained intra-luminal antithrombotic drug release could be considered a desirable improvement towards a valuable solution for this relevant clinical need. For this aim, we present the fabrication and characterization of aspirin-loaded electrospun poly(ε-caprolactone) tubular scaffolds as a vascular drug-delivery graft. Three different drug concentrations were considered (i.e., 1, 5 or 10 % w/w). Although a fibrous structure was clearly observed for all the collected scaffolds, aspirin content was directly implied in the final microstructure leading to a bimodal fiber diameter distribution and fused fibers at crossing-points (5 or 10 % w/w). Mechanical response highlighted a direct relationship for modulus and stress at break with the aspirin content, while the elongation at break was not remarkably different for the investigated cases. The temporal drug release was strongly dependent from the amount of loaded aspirin, reaching a steady state release after about 50 h. Finally, the adhesion assay confirmed the capability of the electrospun scaffolds to reduce platelet adhesion/aggregation onto aspirin loaded polymeric fibers. Aspirin-loaded electrospun tubular scaffold could represent a feasible candidate to develop a novel bioresorbable drug-releasing graft for small-diameter vessel replacements.  相似文献   

4.
To overcome the cytotoxicity of the chemical reagents used to fix bioprostheses, genipin, a naturally occurring crosslinking agent, was used to fix biological tissues in present study. We prepared the biological vascular scaffolds through cell extraction and fixing the porcine thoracic arteries with 1% (by w/v) genipin solution for 3 days, and then examined their mechanical properties and microstructures; glutaraldehyde- and epoxy-fixed counterparts were used as controls. HUVECs were seeded on the type I collagen-coated surface of different modified acellular vascular tissues (fixed with different crosslinking agents), and the growths of HUVECs on the specimens were demonstrated by means of MTT test, the secretion of PGI2 and vWF by HUVECs on the various specimens was also measured. Finally, HUVECs were seeded on the luminal surface of acellular biological vascular scaffolds (<6 mm internal diameter) which were, respectively, treated in the same manner described above, and then cultured for 9 days. On the ninth day, the HUVECs on the luminal surface of these vascular scaffolds were examined morphologically and by immunohistochemistry. Genipin-fixation can markedly diminish antigenicity of the vascular tissues through partially getting rid of cell or reducing the level of free amino groups in the vascular tissues. Genipin-fixed acellular vascular tissues mimicked the natural vessels due to the maintenance of the integrity of total structure and the large preservation of the microstructures of collagen fibers and elastic fibers; therefore, it appeared suitable to fabricate vascular scaffolds in mechanical properties. Compared to controls, the genipin-fixed acellular vascular tissues were characterized by low cytotoxicity and good cytocompatibility. The HUVECs can not only proliferate well on the genipin-fixed acellular vascular tissues, but also preserve the activities and function of endothelial cells, and easily make it endothelialized in vitro. The results showed that the genipin-fixed acellular porcine vascular scaffolds should be promising materials for fabricating vascular grafts or the scaffolds of tissue-engineered blood vessels.  相似文献   

5.
Nanoparticles can be involved in biological activities such as apoptosis, angiogenesis, and oxidative stress by themselves. In particular, inorganic nanoparticles such as gold and silica nanoparticles are known to inhibit vascular endothelial growth factor (VEGF)-mediated pathological angiogenesis. In this study, we show that anti-angiogenic effect of inorganic nanospheres is determined by their sizes. We demonstrate that 20 nm size gold and silica nanospheres suppress VEGF-induced activation of VEGF receptor-2, in vitro angiogenesis, and in vivo pathological angiogenesis more efficiently than their 100 nm size counterparts. Our results suggest that modulation of the size of gold and silica nanospheres determines their inhibitory activity to VEGF-mediated angiogenesis.  相似文献   

6.
Magnesium alloy stent has been employed in animal and clinical experiment in recent years. It has been verified to be biocompatible and degradable due to corrosion after being implanted into blood vessel. Mg–Y–Gd–Nd alloy is usually used to construct an absorbable magnesium alloy stent. However, the corrosion resistant of as cast Mg–Y–Gd–Nd alloy is poor relatively and the control of corrosion rate is difficult. Aiming at the requirement of endovascular stent in clinic, a new biomedical Mg–Zn–Y–Nd alloy with low Zn and Y content (Zn/Y atom ratio 6) was designed, which exists quasicrystals to improve its corrosion resistance. Additionally, sub-rapid solidification processing was applied for preparation of corrosion-resisting Mg–Zn–Y–Nd and Mg–Y–Gd–Nd alloys. Compared with the as cast sample, the corrosion behavior of alloys in dynamic simulated body fluid (SBF) (the speed of body fluid: 16 ml/800 ml min−1) was investigated. The results show that as sub-rapid solidification Mg–Zn–Y–Nd alloy has the better corrosion resistance in dynamic SBF due to grain refinement and fine dispersion distribution of the quasicrystals and intermetallic compounds in α-Mg matrix. In the as cast sample, both Mg–Zn–Y–Nd and Mg–Y–Gd–Nd alloys exhibit poor corrosion resistance. Mg–Zn–Y–Nd alloy by sub-rapid solidification processing provides excellent corrosion resistance in dynamic SBF, which open a new window for biomedical materials design, especially for vascular stent application.  相似文献   

7.
The cytocompatibility of cyclodextrins (CDs) grafting on vascular polyester (PET) prostheses for further loading with biomolecules was investigated in this study. Viability tests demonstrated no toxicity of HP-CDs and PolyHP-CDs at 4,000 mg/l with survival rates of 80 to 96%. Proliferation tests using the human pulmonary microvascular endothelial cell line (HPMEC-ST1) revealed an excellent biocompatibility for Melinex (Film form of PET). For Polythese and Polymaille, a good proliferation rate was observed at 3 days (60-80%) but decreased at 6 days (56-73%). For all CD-grafted samples, low proliferation rates were observed after 6 days (35-38%). Vitality tests revealed excellent functional capacities of HPMEC cells after 3 and 6 days for all samples. Adhesion kinetics tests showed a similar adhesion of HPMEC cells on control and Melinex. A low adhesion was observed on Polythese and especially on Polymaille compared to control. After CD grafting, the cell adhesion was decreased. The woven or knitted architecture and CD grafting were the most likely causes of this weak adhesion. The adhesion kinetic test was confirmed by SEM observations and immunocytochemistry. The low proliferation of HPMEC on virgin prostheses and especially on grafted prostheses was not due to a cytotoxic effect, but to the physical surface characteristics of the prostheses.  相似文献   

8.
Emulsion electrospinning is a novel approach to fabricate core–shell nanofibers, and it is associated with several advantages such as the alleviation of initial burst release of drugs and it protects the bioactivity of incorporated drugs or proteins. Aiming to develop a sustained release scaffold which could be a promising substrate for cardiovascular tissue regeneration, we encapsulated vascular endothelial growth factor (VEGF) with either of the protective agents, dextran or bovine serum albumin (BSA) into the core of poly(l-lactic acid-co-ε-caprolactone) (PLCL) nanofibers by emulsion electrospinning. The morphologies and fiber diameters of the emulsion electrospun scaffolds were determined by scanning electron microscope, and the core–shell structure was evaluated by laser scanning confocal microscope. Uniform nanofibers of PLCL, PLCL–VEGF–BSA, and PLCL–VEGF–DEX with fiber diameters in the range of 572 ± 92, 460 ± 63, and 412 ± 61 nm, respectively were obtained by emulsion spinning. The release profile of VEGF in phosphate-buffered saline for up to 672 h (28 days) was evaluated, and the scaffold functionality was established by performing cell proliferations using human bone marrow derived mesenchymal stem cells. Results of our study demonstrated that the emulsion electrospun VEGF containing core–shell structured PLCL nanofibers offered controlled release of VEGF through the emulsion electrospun core–shell structured nanofibers and could be potential substrates for cardiac tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号