首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
将含溴甲基杂萘联苯聚醚酮与杂萘联苯聚芳醚酮(PPEK)以不同的比例进行共混,采用溶液浇铸的方法得到一系列基膜,然后将其浸泡在三甲胺溶液中进行胺化处理,得到季胺化杂萘联苯聚芳醚酮离子交换膜(QBPPEK/PPEK)。测试了QBPPEK/PPEK的离子交换容量(IEC)、吸水率、溶胀率、面电阻、钒渗透系数和微观结构。随着PPEK含量的增加,QBPPEK/PPEK膜的IEC、吸水率和钒渗透系数减小而面电阻上升。QBPPEK/PPEK膜具有较好的阻钒性能,其电流效率均大于Nafion115。当PPEK含量为10%时,QBPPEK/PPEK膜单电池的能量效率达到88.9%。PPEK的加入可以有效的提高QBPPEK/PPEK膜的氧化稳定性。  相似文献   

2.
以含二甲基杂萘联苯聚芳醚酮为原料,通过控制溴化条件,得到了含溴甲基杂萘联苯聚芳醚酮,与吡啶反应得到可溶解的含吡啶基杂萘联苯聚芳醚酮(Py-PPEK),通过溶液浇铸法制得了含吡啶基阴离子交换膜.考察了离子交换容量(IEC)对Py-PPEK膜基本性能及电池性能的影响.研究结果表明,随着IEC的增加,Py-PPEK膜的吸水率...  相似文献   

3.
4.
以1′,4-二(1,1′-联苯基)-6,6′-双二氮杂萘-1,4′-二酮、4-(4-羟苯基)-2,3-二氮杂萘-1-酮和4,4′-二氟二苯酮进行共聚合,经磺化改性制备了新型磺化联苯侧基双二氮杂萘酮聚醚酮(SPDPEKs).通过核磁共振波谱、红外光谱对SPDPEKs的结构进行表征.采用溶液浇铸法制备了SPDPEKs质子交换膜,对其离子交换容量(IEC)、溶胀率、质子传导率以及耐氧化性进行了测试.结果表明:SPDPEK质子交换膜的IEC介于0.75~1.77 mmol/g之间,在80℃下的吸水率介于9.2%~30.2%之间,溶胀率低于10%;SPDPEKs膜在95℃的质子传导率介于53.3~146.2 mS/cm,在80℃芬顿试剂中的破裂时间在3.4~5.3 h之间,溶解时间则介于12~36 h.SPDPEKs膜表现出良好的尺寸稳定性、质子传导性和耐氧化稳定性.  相似文献   

5.
采用直接缩聚的方法,通过调整磺化单体(3,3′-二磺酸钠基-4,4′-二氯二苯砜)和非磺化单体(1,4′-二(4′-氟苯甲酰)苯)的比例与双酚单体(2,2′-二(4-羟基苯基)丙烷)共聚合成了系列具有不同磺化度(0.2~1.2)的磺化聚芳醚酮酮砜共聚物。通过红外分析(FT-IR),差示扫描量热分析(DSC),热重分析(TGA)对其结构和性能进行了表征,研究表明,随着磺化度的增加,Na+离子的扩散系数从0.96×10-11S2/m增加到1.25×10-10S2/m,并通过透射电镜(TEM)对其进行了微观结构研究,从结构上解释了膜的物理性能,初步建立了结构与性能之间的关系。  相似文献   

6.
以含侧苯基杂萘联苯聚芳醚砜(PPES-Os)为原料,通过非均相法制备磺化含侧苯基杂萘联苯聚芳醚砜(SPPES-Os).通过核磁共振与红外光谱表征了SPPES-Os的结构,测试了SPPES-Os的离子交换容量(IEC)、溶解性,采用热失重分析法对SPPES-Os的热稳定性进行了分析.采用溶液浇铸法将SPPES-Os制成均质膜,考察了IEC对均质膜的吸水率、溶胀率、接触角、水蒸气吸附性以及水蒸气渗透性能的影响.结果表明,随着IEC增加,膜的吸水率、水蒸气吸附量和水蒸气渗透速率增加,而接触角降低;SPPES-Os膜在25℃时吸水率在9%以上,48℃时水蒸气渗透速率高于7.53×10~(-3) g/(cm~2·h).  相似文献   

7.
针对复合材料液氧贮箱在使用过程中出现的液氧不相容现象,利用含杂萘联苯结构的4-(4-羟基苯基)-2,3-二氮杂萘-1-酮(DHPZ)和多氟单体全氟联苯(DFBP)合成聚合物含氟杂萘联苯聚芳醚(PPEfB)。以PPEfB为基体,研究了液氧贮箱用涂料的制备方式,优化并确定了手工喷涂的最佳工艺条件为,涂料的质量分数15%、喷涂压力0.02 MPa、喷涂次数8次。制备的涂层冲击反应敏感性IRS为0%,冲击强度50 cm,附着力ISO等级为0级,铅笔硬度等级为2H级,柔韧性为轴径1 mm,涂层具有优异的液氧相容性及韧性,为解决复合材料液氧贮箱的液氧不相容问题提供了新思路。  相似文献   

8.
新型杂萘联苯聚芳醚腈(酮)耐高温绝缘漆的研制   总被引:1,自引:0,他引:1  
系统地研究了杂萘联苯PPEN(K)聚合物在绝缘漆领域的应用,考察了PPENK中腈、酮含量对绝缘漆性能的影响,发现当N/K=1/1时,绝缘漆具有优异的机械性能;对比了PPENK、PPENKK、PPEN和PPEN—BPA几种聚合物所制备的绝缘漆的性能,认为以PPENK树脂为主要成膜物制得的绝缘漆综合性能最优;在此基础上,选择适当的涂线工艺,成功地研制出了新型PPENK漆包线,其机械性能、电性能和热性能都远远高于220级聚酰亚胺漆包线国家标准要求。  相似文献   

9.
以含苄基氯结构的杂萘联苯聚醚酮(CMPPEK-P)为原料、三甲胺为胺化试剂,通过先制膜后胺化的方式,利用水蒸气诱导相分离法(VIPS)成功制备了一种高性能钒电池用含有季铵基侧链的杂萘联苯聚醚酮(QAPPEK-P)多孔阴离子交换膜。研究了在VIPS过程中,不同浓度氯化钠水溶液(质量分数0%~26%,下同)作为凝胶浴对膜结构和性能的影响:提高氯化钠浓度,QAPPEK-P膜的孔隙率提高,面电阻显著降低,而其阻钒性能无明显变化。其中,在凝胶浴盐浓度为26%条件下制得的QAPPEK-P膜,装载其单电池的电池效率最佳:在电流密度为140 mA/cm2时,能量效率可达80%;且其电池性能在120 mA/cm2的电流密度下,充放电150个循环后无明显变化,显示出良好的化学稳定性,证明了QAPPEK-P在多孔阴离子交换膜在钒电池应用中的潜力。  相似文献   

10.
甲基取代杂萘联苯型聚芳醚的合成、表征及性能   总被引:8,自引:0,他引:8  
以自制的新型甲基取代类双酚 4 - ( 3-甲基 - 4 -羟基苯基 ) - 2 - 3-二氮杂萘 - 1-酮 ( OM- HPPZ)为单体与4 ,4′-二氟二苯酮、4 ,4′-二氯二苯砜进行亲核缩聚反应 ,制得了一类新型甲基取代聚芳醚酮、聚芳醚砜及其共聚物聚芳醚砜酮树脂。在适宜的聚合条件下 ,获得了高分子量的聚合物 ,聚醚酮的特性粘度可达0 .70× 10 2 m L/ g;通过调节砜酮比例 ( S/ K)可获得不同分子量、不同玻璃化温度的共聚物 ( PPESK)。利用 DSC、TGA研究了聚合物的耐热性能 ,结果表明 ,新型聚芳醚玻璃化温度高 ( 2 5 2℃~ 2 90℃ ) ,耐热稳定性好 ( 5 %热失重温度高于 4 16℃ ) ,在氯仿、DMAc等极性有机溶剂中可溶解成膜 ,以 FT- IR和 1H-NMR研究了类双酚单体 OM- HPPZ和聚合物的结构 ,证明与设计结构完全一致  相似文献   

11.
以4-(4-羟基苯基)-2,3-二氮杂萘-1-酮与1-氯-4-(4-氯苯甲酰基)萘单体经亲核取代反应,合成了含二氮杂萘酮和萘结构的聚芳醚酮。用FT-IR、∧1H-NMR、DSC、TG、WAXD等方法对聚合物进行了表征,研究了聚合物的溶解性能。结果表明,该聚芳醚酮是一种耐热等级高的可溶性无定形聚合物。  相似文献   

12.
13.
含二氮杂萘酮联苯结构聚芳酯的合成和性能   总被引:1,自引:0,他引:1  
以新二酸4-[4-(4-羧基苯氧基)苯基]-2-(4-羧基苯基)二氮杂萘-1-酮(1)和4种商品二酚进行溶液缩聚反应,制备出一系列古杂萘联苯结构新型聚芳酯,其特性粘度在0.50-0.58 dL·g-1之间.以FT-IR.1H-NMR证明了聚合物的结构.该类聚芳醇的玻璃化转变温度在209-272℃之间,在N2气氛下10%的热失重温度在468-481℃之间.聚芳本具有无定型结构,可溶解于N-甲基吡咯烷酮(NMP),N,N-二甲基乙酰胺(DMAc),间甲酚,吡啶和氯仿(CHCls)中.扭曲和非共平面的结构存在使该系列聚芳酯既耐高温又具有良好的溶解性能.  相似文献   

14.
采用溶液聚合法制备了不同配比的含杂萘联苯结构的四元共聚芳醚砜酮(PPBESK)。采用热失重(TGA),差示扫描分析(DSC)和动态机械热分析(DMTA)对该聚合物的热性能和动态机械性能进行了表征和研究。结果表明,加入少量联苯结构的共聚物仍然具有良好的热性能。观察动态机械热分析谱图,可以发现,在150℃~200℃的扫描温度范围内,共聚物的储能模量保持较高值并出现一个小转变,随着温度升高,在250℃~300℃之间出现了共聚物的玻璃化转变温度,即α转变,此时储能模量降低较大。随着共聚物主链中砜基结构含量的增加,其玻璃化转变温度有所上升。  相似文献   

15.
多取代联苯型聚芳醚酮膜的透气性研究   总被引:3,自引:0,他引:3  
从分子设计出发,合成了自由体积大、玻璃化温度高和优异综合性能的多取代联苯型聚芳醚酮.对其均质膜的气体渗透性进行了测试,并考察了共聚物组成对膜性能的影响.其中两种共聚物的渗透性为COPPEKAD(1:3):PCO2=4.49 barrer,αCO2/N2=41.96,PO2=0.75 barrer,αO2/N2=7.10;COPPEKAC(1:1):PCO2=9.19 barrer,αCO2/N2=34.16,PO2=1.50 barrer,αO2/N2=5.57.此类聚合物的渗透活化能较小,对温度的依赖性小,表明这种聚合物是高渗透性和高选择性的耐高温气体膜分离材料.  相似文献   

16.
多聚代联苯型聚芳醚酮膜的透气性研究   总被引:2,自引:0,他引:2  
从分子设计出发,合成了自由体积大,玻璃化温度高和优异综合性能的多聚代联苯型聚芳醚酮。对其均质膜的气体渗透性进行了测试,并考察了共聚物组成对膜性能的影响。  相似文献   

17.
以4-(4-羟基苯基)-2,3-二氮杂萘-1-酮(DHPZ)、4-(3-烯丙基-4-羟基苯基)-2,3-二氮杂萘-1-酮(allyl-DHPZ)和2,6-二氟苯腈(DFBN)为单体,采用芳香亲核取代法,通过改变单体的物质的量配比,合成了系列可溶解可交联的聚芳醚腈(PAENs)。通过核磁共振测试证明了所合成的单体以及聚合物的结构,凝胶渗透色谱仪测定了聚合物的相对分子质量(珚Mw为45130~58403),红外光谱和差示扫描量热仪分析了聚合物的热交联反应过程。所合成的聚芳醚腈在室温时可溶于氯仿、二甲基乙酰胺、二甲基甲酰胺和甲基吡咯烷酮等极性有机溶剂,交联后的聚合物不溶于任何有机溶剂(凝胶含量最高达到98.6%),具有良好的热稳定性能(1%热失重为450℃)。  相似文献   

18.
概述了近几年来燃料电池用磺化聚芳醚酮质子交换膜改性的研究进展,分别从共混法和有机/无机杂化法等两个方面总结了磺化聚芳醚酮质子交换膜改性的研究结果,并展望了今后的研究趋势。  相似文献   

19.
质子交换膜是液流电池的核心部件之一。以6F-双酚A(6F-BPA)、二氟二苯甲酮(DFBP)及磺化二氟二苯甲酮(SDFBP)为共聚单体,经由逐步缩聚反应,通过调整DFBP与SDFBP的投料比,合成了3种含氟磺化聚芳醚酮,采用溶液浇铸成膜的方法制备成质子交换膜。傅立叶红外、核磁氢谱及离子交换容量的表征结果表明所合成聚合物的结构与目标产物的结构相一致。当SDFBP与DFBP的投料比为1∶1时,所制备的质子交换膜具有最高的H~+传导选择性,所组装的钒流电池在充放电流为50mA/cm~2时,电池的库仑效率、电压效率、能量效率分别达到95%,78%,74%,优于同等条件下Nafion 117膜的性能。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号