首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
玻璃微珠的应用研究进展   总被引:6,自引:1,他引:6  
介绍了玻璃微珠的类型及其特性,综述了近年来玻璃微珠的应用研究进展,包括在建材、塑料、橡胶、涂料、医药等领域的应用情况。改性后的玻璃微珠可应用于电磁屏蔽和吸波材料的制备,拓宽了其应用范围,并分析了其应用前景。  相似文献   

2.
鲍伶香  孙成辉  庞思平 《功能材料》2021,52(3):3034-3042
贵金属纳米粒子/金属有机骨架复合物因其在催化、传感、气体吸附与存储等诸多领域的应用前景而受到广泛关注.综述了贵金属纳米粒子/金属有机骨架复合物的制备方法及应用进展.对这类复合物的制备方法进行了归纳,并分析了其特点;总结了其在储氢、多相催化等领域的应用,以便更好地了解其应用前景.  相似文献   

3.
何学云  张凯峰  杨文  吴雄  明阳 《材料导报》2013,27(Z1):281-284
简述了硅酸盐固体废弃物及其特性,指出了其作为混凝土掺合料的可行性,综述了矿渣、粉煤灰、钢渣、煤矸石等作矿物掺合料在混凝土应用中的研究进展,最后对其在应用中存在的问题进行了分析,并指出其作矿物掺合料进一步研究的方向.  相似文献   

4.
多孔介质由于其具有比表面积大、热导率低、良好的蓄能性能等特点,在许多工程领域有广泛的应用。简要总结和介绍了多孔材料种类、主要性能及在耗能大户的暖通空调领域的主要的应用,并对其在暖通空调领域应用过程中存在的主要问题进行了分析,以便为其进一步的研究及应用提供参考。  相似文献   

5.
聚乳酸改性及其在包装领域的应用   总被引:5,自引:3,他引:2  
聚乳酸是一种可完全生物降解的新型高分子材料,由于其良好的物理机械性能、生物相容性、可吸收性及对人体和环境无毒性等,其应用前景广阔,但是聚乳酸的一些局限性限制了其进一步应用.从聚乳酸的化学改性及物理改性两方面总结了目前的研究进展,介绍其在包装领域的应用,并为后续的研究提出了方向.  相似文献   

6.
首先介绍了阳离子聚合物乳液的种类和制备方法,并且对其制备方法的优缺点进行了比较,然后阐述了它在纺织、涂料、造纸、水处理、生物医药等领域的应用,最后对其应用前景进行了展望。  相似文献   

7.
郭孟狮  杨靖华  周心艳 《材料导报》2006,20(Z2):108-110
近年来管状结构的纳米TiO2在微电子、应用催化和光电转化等领域展现出良好的应用前景,对其制备技术和应用研究已成为多学科研究的热点.主要综述了TiO2纳米管的最新研究进展情况以及发展现状,介绍了其制备方法、形貌、晶体结构、形成机理及应用前景.  相似文献   

8.
张勇  郝永刚 《材料导报》2021,35(z1):78-82
本文阐述了石墨烯及氧化石墨烯在纺织领域的应用研究进展,介绍了石墨烯及氧化石墨烯的特性和结构特点,系统总结了石墨烯纤维、石墨烯复合纤维的开发以及在纺织中的应用、石墨烯功能织物的开发和应用现状,指出石墨烯在纺织中应用已成为热点,并且其应用价值已得到体现.同时,石墨烯在纺织中的应用还存在许多问题,相信随着研究的不断深入,其在纺织中应用必将会有更广阔的前景.  相似文献   

9.
王国华 《硅谷》2008,(12):91
虚拟现实技术是综合的高新信息技术,其应用前景非常广阔,也得到了广泛研究.介绍虚拟现实技术在工程管理中具体应用,介绍其在项目可行性研究和投资经济性评价、房地产、招标投标、施工管理、物业管理等方面的应用.  相似文献   

10.
本文综述了分析化学中用于食品安全检测的各项技术的产生与发展、原理。简述了其在食品安全检测中的应用,并展望了其在食品安全领域的应用前景。  相似文献   

11.
The purpose of this study was to investigate the dimensional changes and phase transition of nanotubular titanium oxide arrays after heat treatment under an oxygen-containing atmosphere. The thermodynamic background for the oxidation of titanium to titanium oxide was theoretically investigated as a function of the oxygen partial pressure. The anodized titanium nanotubes had lengths between 400 and 500 nm, thicknesses of 11 nm and an amorphous structure. The specimens heat-treated at higher oxygen partial pressures preferentially had rutile phase rather than anatase phase. The thickness of the TiO2 nanotubes was increased at a lower oxygen partial pressure.  相似文献   

12.
The multi-staged formation process of titanium oxide nanotubes was investigated in detail under a hydrothermal treatment. During the synthesis procedure, an intermediate stage (tree-like structures) was observed before the formation of the titanium oxide layered structures. The layered structure of titanium oxide generally was considered to exfoliate directly from raw TiO2 materials through the alkaline hydrothermal treatment. The rolling process of the layered structures of titanium oxide was confirmed by TEM observation after the alkaline hydrothermal treatment for the raw TiO2 materials, followed by washing with 4 M HNO3 aqueous solution. The thermal stability of the tube products was investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that both the morphology and crystal phase of titanium oxide nanotubes could be retained even after calcination at 650 °C.  相似文献   

13.
The authors present the first reported use of vertically oriented titanium oxide nanotube/polypyrrole (PPy) nanocomposites to increase the specific capacitance of TiO2 based energy storage devices. To increase their electrical storage capacity, titanium oxide nanotubes were coated with PPy and their morphologies were characterized. The incorporation of PPy increased the specific capacitance of the titanium oxide nanotube based supercapacitor system, due to their increased surface area and additional pseudo-capacitance.  相似文献   

14.
The formation mechanism of a thin film of self organized TiO2 nanotube arrays prepared by anodic oxidization of a pure titanium sheet in electrolyte solutions containing potassium fluoride and sulfate was investigated through near-real time monitoring the anode mass, the current density, and the surface topography during the anodization. Energy dispersive X-ray spectrometry was used to monitor the surface composition change during the anodization. The titanium surface was first electrochemically oxidized to form a layer of dense oxide under which nanotubes were originated. With the protection of the oxide layer, long nanotubes could be formed in electrolyte solutions with relatively high pH. The surface composition analysis indicates that the nanotubes were not totally oxidized to TiO2. However, no other elements but Ti and O were found in the oxide film. This work reveals a way to fabricate long nanotubes with defined sizes.  相似文献   

15.
Oxide nanotubes with different diameters and lengths were fabricated on the biomedical Ti2448 alloy by anodic oxidation in neutral electrolyte.Similar to oxide nanotubes fabricated on pure titanium and its alloys,the as-grown nanotubes on Ti2448 also exhibit gradually changing chemical distribution along the direction of tube growth.Furthermore,several kinds of oxides with different valence states(MxOy)are formed simultaneously for each alloying element M,while their volume fractions vary gradually along the tube-growth direction.The findings of this study would provide insight into the effect of valence states on the desired nanotube properties and help develop ways to enhance the properties of the preferred oxide.  相似文献   

16.
Titanium and Ti alloys have been used extensively as bone-implant materials due to their high strength-to-weight ratio, good biocompatibility and excellent corrosion resistance. In this work, we have investigated the effects of the β-stabilizing element Nb on the morphology of nanotubes formed on Ti-xNb alloys using 1.0 M H3PO4 electrolyte containing 0.8 wt.% NaF and various electrochemical methods. Oxide layers consisting of highly ordered nanotubes with a wide range of diameters (approximately 55-220 nm) and lengths (approximately 730 nm-2 μm) can be formed on alloys in the Ti-xNb system as a function of Nb content. The nanotubes formed on the Ti-Nb alloy surface were transformed from the anatase to rutile structure of titanium oxide. The titanium oxide nanotube surface was observed to have lower corrosion resistance in 0.9% NaCl solution compared to titanium oxides surfaces on Ti-xNb alloys without the nanotube morphology.  相似文献   

17.
通过碱液水热法制备TiO_2纳米管(TiO_2-NTs)前驱体,并将其与氧化石墨烯复合得到二氧化钛纳米管/还原氧化石墨烯(TiO_2-NTs/rGO)复合材料。利用X射线衍射仪(XRD),透射电子显微镜(TEM),电化学测试等分析技术对复合物进行表征。结果表明:复合物中TiO_2-NTs晶相为B型(TiO_2(B)),其管径约为25~30nm;与单纯TiO_2-NTs相比,石墨烯负载的TiO_2-NTs的倍率性能和循环性能都得到显著改善,在放电倍率为1C(335mA/g)时,TiO_2-NTs/rGO和TiO_2-NTs首次放电容量分别为258.5mAh/g和214.9mAh/g;电化学阻抗谱测试显示,复合材料的电荷转移电阻明显小于纯相TiO_2-NTs。  相似文献   

18.
Mono-dimensional titanium oxide nanostructures (multi-walled nanotubes and nanorods) were synthesized by the hydrothermal method and applied to the construction of dye sensitized solar cells (DSCs). First, nanotubes (TiNTs) and nanotubes loaded with titanium oxide nanoparticles (TiNT/NPs) were synthesized with specific surface areas of 253 m2/g and 304 m2/g, respectively. After that, thermal treatment of the nanotubes at 500 °C resulted in their transformation into the corresponding anatase nanorods (TiNT-Δ and TiNT/NPs-Δ samples). X-ray diffraction and Raman spectroscopy data indicated that titanium oxide in the pristine TiNT and TiNT/NP samples was converted into anatase phase TiO2 during the heating. Additionally, specific surface areas and water adsorption capacities decreased after the heat treatment due to the sample agglomeration and the collapse of the inner nanotube channels. DSCs were fabricated with the nanotube TiNT and TiNT/NP samples and with the anatase nanorod TiNT-Δ and TiNT/NPs-Δ samples as well. The highest power conversion efficiency of η = 3.12% was obtained for the TiNT sample, despite its lower specific surface compared with the corresponding nanoparticle-loaded sample (TiNT/NP).  相似文献   

19.
Titanium oxide (TiO2)/polyacrylic acid (PAA) composite nanotubes were firstly fabricated through the sol-gel process of titanium alkoxide in the inner pores of alumina template followed layer-by-layer assembly with polyacrylic acid (PAA). Mesoporous TiO2 nanotubes could be obtained after the removal of PAA component by calcination and etching of the template with concentrated sodium hydroxide aqueous solution. The surface area of as-prepared porous TiO2 nanotubes was measured as twice larger than that of the conventional TiO2 nanotubes and the pore diameter in the wall of the tubes is several nanometers. Such assembled mesoporous nanotubes can serve as carriers for catalysis release and biomolecules.  相似文献   

20.
Nanotubular titanium dioxide thin films were prepared by anodization of titanium metal films evaporated on indium tin oxide (ITO) coated glass. A facile method to enhance the adhesion of the titanium film to the ITO glass was developed. An optimum thickness of 550 nm for the evaporated titanium was found to keep the film adhered to ITO during the anodization. The films were further modified by growing amorphous titania, alumina and tantala thin films conformally in the nanotubes by atomic layer deposition (ALD). The optical, electrical and physical properties of the different structures were compared. It was shown that even 5 nm thin layers can modify the properties of the nanotubular titanium dioxide films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号