首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Cochlear frequency selectivity in lower vertebrates arises in part from electrical tuning intrinsic to the sensory hair cells. The resonant frequency is determined largely by the gating kinetics of calcium-activated potassium (BK) channels encoded by the slo gene. Alternative splicing of slo from chick cochlea generated kinetically distinct BK channels. Combination with accessory beta subunits slowed the gating kinetics of alpha splice variants but preserved relative differences between them. In situ hybridization showed that the beta subunit is preferentially expressed by low-frequency (apical) hair cells in the avian cochlea. Interaction of beta with alpha splice variants could provide the kinetic range needed for electrical tuning of cochlear hair cells.  相似文献   

2.
Adenovirus (Ad) is used as a vector for gene delivery in therapies involving genetic disease, vascular disease, and cancer. The first step for efficient gene transfer is effective virus binding to the target cells. We have found that Ad-mediated gene delivery to multiple cell types is much less efficient compared to epithelial-derived cells. Low gene delivery to nonepithelial cell types was directly correlated to a deficiency of the cellular receptor which mediates Ad binding. To overcome this inefficiency we constructed a new virus, AdPK, that contains a heparin-binding domain that targets the virus to broadly expressed, heparan-containing cellular receptors. AdPK delivers genes to multiple cell types at markedly higher efficiencies than unmodified Ad. Viruses with enhanced attachment characteristics significantly improve gene transfer efficiency and may expand the tissues amenable to efficient Ad-mediated gene therapy.  相似文献   

3.
A K+ channel gene has been cloned from Drosophila melanogaster by complementation in Saccharomyces cerevisiae cells defective for K+ uptake. Naturally expressed in the neuromuscular tissues of adult flies, this gene confers K+ transport capacity on yeast cells when heterologously expressed. In Xenopus laevis oocytes, expression yields an ungated K(+)-selective current whose attributes resemble the "leak" conductance thought to mediate the resting potential of vertebrate myelinated neurons but whose molecular nature has long remained elusive. The predicted protein has two pore (P) domains and four membrane-spanning helices and is a member of a newly recognized K+ channel family. Expression of the channel in flies and yeast cells makes feasible studies of structure and in vivo function using genetic approaches that are not possible in higher animals.  相似文献   

4.
K+ channel modulation in arterial smooth muscle   总被引:1,自引:0,他引:1  
Potassium channels play an essential role in the membrane potential of arterial smooth muscle, and also in regulating contractile tone. Four types of K+ channel have been described in vascular smooth muscle: Voltage-activated K+ channels (Kv) are encoded by the Kv gene family, Ca(2+)-activated K+ channels (BKCa) are encoded by the slo gene, inward rectifiers (KIR) by Kir2.0, and ATP-sensitive K+ channels (KATP) by Kir6.0 and sulphonylurea receptor genes. In smooth muscle, the channel subunit genes reported to be expressed are: Kv1.0, Kv1.2, Kv1.4-1.6, Kv2.1, Kv9.3, Kv beta 1-beta 4, slo alpha and beta, Kir2.1, Kir6.2, and SUR1 and SUR2. Arterial K+ channels are modulated by physiological vasodilators, which increase K+ channel activity, and vasoconstrictors, which decrease it. Several vasodilators acting at receptors linked to cAMP-dependent protein kinase activate KATP channels. These include adenosine, calcitonin gene-related peptide, and beta-adrenoceptor agonists. beta-adrenoceptors can also activate BKCa and Kv channels. Several vasoconstrictors that activate protein kinase C inhibit KATP channels, and inhibition of BKCa and Kv channels through PKC has also been described. Activators of cGMP-dependent protein kinase, in particular NO, activate BKCa channels, and possibly KATP channels. Hypoxia leads to activation of KATP channels, and activation of BKCa channels has also been reported. Hypoxic pulmonary vasoconstriction involves inhibition of Kv channels. Vasodilation to increased external K+ involves KIR channels. Endothelium-derived hyperpolarizing factor activates K+ channels that are not yet clearly defined. Such K+ channel modulations, through their effects on membrane potential and contractile tone, make important contributions to the regulation of blood flow.  相似文献   

5.
Matrix metalloproteinase (MMP) family members have been associated with advanced-stage cancer and contribute to tumor progression, invasion, and metastasis as determined by inhibitor studies. In situ hybridization was performed to analyze the expression and localization of all known MMPs in a series of human breast cancer biopsy specimens. Most MMPs were localized to tumor stroma, and all MMPs had very distinct expression patterns. Matrilysin was expressed by morphologically normal epithelial ducts within tumors and in tissue from reduction mammoplasties, and by epithelial-derived tumor cells. Many family members, including stromelysin-3, gelatinase A, MT-MMP, interstitial collagenase, and stromelysin-1 were localized to fibroblasts of tumor stroma of invasive cancers but in quite distinct, and generally widespread, patterns. Gelatinase B, collagenase-3, and metalloelastase expression were more focal; gelatinase B was primarily localized to endothelial cells, collagenase-3 to isolated tumor cells, and metalloelastase to cytokeratin-negative, macrophage-like cells. The MMP inhibitor, TIMP-1, was expressed in both stromal and tumor components in most tumors, and neither stromelysin-2 nor neutrophil collagenase were detected in any of the tumors. These results indicate that there is very tight and complex regulation in the expression of MMP family members in breast cancer that generally represents a host response to the tumor and emphasize the need to further evaluate differential functions for MMP family members in breast tumor progression.  相似文献   

6.
A two-step hybridization/subtraction procedure was employed to isolate markers for the later stages of Purkinje cell differentiation. From this screen, a novel Shaw potassium channel cDNA (Kv3.3b) was identified that is developmentally regulated. Expression of this channel is highly enriched in the brain, particularly in the cerebellum, where its expression is confined to Purkinje cells and deep cerebellar nuclei. Sequence analysis revealed that it is an alternatively spliced form of the mouse Kv3.3 gene, and that the previously reported Kv3.3 mRNA (Ghanshani et al., 1992) is not expressed in cerebellum. Expression of the Kv3.3b mRNA begins in cerebellar Purkinje cells between postnatal day 8 (P8) and P10 and continues through adulthood, coinciding with elaboration of the mature Purkinje cell dendritic arbor. The timing of expression of Kv3.3b mRNA is maintained in mixed, dissociated primary cerebellar cell culture. These results suggest that the Kv3.3b K+ channel function is restricted to terminally differentiated Purkinje cells, and that analysis of the mechanisms governing its expression in vivo and in vitro can reveal molecular mechanisms governing Purkinje cell differentiation.  相似文献   

7.
Cystic fibrosis (CF) is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Its product is a cyclic AMP-dependent Cl- channel, that is defective in CF. Since cAMP regulates the expression of many genes and since the 5'-flanking region of the CFTR gene contains cAMP response elements, we hypothesized that intracellular cAMP might modulate not only the cAMP-dependent Cl- channel CFTR, but also CFTR gene expression in epithelial cells. To accomplish this, we investigated Cl- secretion and CFTR-mRNA levels in HT-29 and T84 colon carcinoma epithelial cells before and after exposure to forskolin and 8-bromo-cAMP for 12 hr. While resting T84 cells increased Cl- secretion in response to forskolin strongly and immediately, HT-29 cells did not, although both cell lines showed highly increased Cl- efflux in response to A23187, a calcium ionophore. Interestingly, prolonged exposure to forskolin (12 hr) induced a clear decrease of CFTR-mRNA levels in T84 cells, but an increase of CFTR-mRNA levels in HT-29 cells, thus demonstrating different behaviour of CFTR gene regulation in different epithelial cells in response to intracellular cAMP. These results suggest that cells with an effective cAMP-dependent Cl- channel (CFTR) respond to prolonged stimulation of this channel with down-regulation of CFTR gene expression, while cells with no effective cAMP-dependent Cl--secretion respond with an up-regulation of CFTR gene expression.  相似文献   

8.
To express and characterize the function of a plant ion channel gene in plant cells, it is necessary to establish a model system that lacks the endogenous channel activity and can be genetically transformed. Patch-clamp techniques were used to survey voltage-dependent K+ channel activities in different cell types of tobacco plants. Interestingly, mesophyll cells lacked the inward K+ current found in guard cells. A transgene containing the inward K+ channel gene KAT1 from Arabidopsis was constructed and expressed in the mesophyll cells of transgenic tobacco plants. Expression of the KAT1 gene produced a large voltage-dependent inward current across the plasma membrane of mesophyll protoplasts. The KAT1 current was carried by K+ and activated at voltage more negative than -100 mV. This K+ current had a single-channel conductance of 6-10 pS and was highly sensitive to TEA, Cs+ and Ba2+. This study represents the first example in which a plant ion channel gene is functionally expressed and studied in plant cells. Tobacco mesophyll cells will provide a useful model for functional characterization of inward K+ channel genes from higher plants.  相似文献   

9.
The tissue distributions and physiological properties of a variety of cloned voltage-gated potassium channel genes have been characterized extensively, yet relatively little is known about the mechanisms controlling expression of these genes. Here, we report studies on the regulation of Kv1.1 expressed endogenously in the C6 glioma cell line. We demonstrate that elevation of intracellular cAMP leads to the accelerated degradation of Kv1.1 RNA. The cAMP-induced decrease in Kv1.1 RNA is followed by a decrease in Kv1. 1 protein and a decrease in the whole cell sustained K+ current amplitude. Dendrotoxin-I, a relatively specific blocker of Kv1.1, blocks 96% of the sustained K+ current in glioma cells, causing a shift in the resting membrane potential from -40 mV to -7 mV. These data suggest that expression of Kv1.1 contributes to setting the resting membrane potential in undifferentiated glioma cells. We therefore suggest that receptor-mediated elevation of cAMP reduces outward K+ current density by acting at the translational level to destabilize Kv1.1 RNA, an additional mechanism for regulating potassium channel gene expression.  相似文献   

10.
Multiple sites of extraretinal photoreception are present in vertebrates, but the molecular basis of extraretinal phototransduction is poorly understood. This study reports the cloning of the first opsin specifically expressed in the directly photosensitive pineal and parapineal of cold-blooded vertebrates. This opsin, identified in channel catfish and termed parapinopsin, defines a new gene family of vertebrate photopigments and is expressed in a majority of parapinealocytes and a subset of pineal photoreceptor cells. Parapinopsin shows a caudal-rostral gradient of expression within the pineal organ. This study also reports the cloning of partial cDNAs encoding the channel catfish orthologues of rhodopsin and the red cone pigment-the full complement of retinal opsins in the species. In situ hybridization studies using probes derived from these retinal opsins, together with parapinopsin, reveal no expression of retinal opsins in pineal and parapineal organ and no expression of any opsin tested in the "deep brain," iris, or dermal melanophores. These data imply that phototransduction in these sites of extraretinal photoreception must be mediated by novel opsins.  相似文献   

11.
Interactions between mesenchymal-derived thecal cells and epithelial-derived granulosa cells are essential for follicular development in the ovary. These mesenchymal-epithelial cell interactions are in part mediated by keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), and Kit ligand (KL). This study investigates the hypothesis that thecal cell-derived growth factors (e.g. KGF and HGF) regulate granulosa cell function, and granulosa cell-derived growth factors (e.g. KL) regulate thecal cell function. Gonadotropin regulation of this cell-cell interaction is also examined. Sensitive quantitative RT-PCR assays were used to analyze gene expression of KGF, HGF, and KL in the ovary. Thecal cell-derived KGF and HGF stimulated KL expression in bovine granulosa cells. Granulosa cell-derived KL stimulated KGF and HGF expression in bovine thecal cells. These results suggest that thecal and granulosa cells interact in a positive feedback loop mediated by KGF, HGF, and KL. Previous studies have suggested that gonadotropins (i.e. FSH and LH) regulate locally produced growth factor expression in the ovary. Treatment of bovine granulosa cells with FSH and hCG (a LH agonist) directly stimulated KL expression. The LH agonist hCG was also found to stimulate both KGF and HGF expression in thecal cells. The actions of gonadotropins on follicular development may in part be indirectly regulated by KL, KGF, and HGF expression. A novel positive feedback loop was identified between thecal cells and granulosa cells that is mediated by KL, KGF, and HGF. Thecal cell-derived KGF and HGF can stimulate granulosa cell-derived KL expression, and KL, in turn, can stimulate thecal cell-derived KGF and HGF expression. Combined observations support the hypothesis that mesenchymal-epithelial cell interactions between thecal and granulosa cells can play a significant role during ovarian follicular development and mediate gonadotropin actions.  相似文献   

12.
Potassium channels have been implicated in central roles in activity-dependent neural plasticity. The giant fiber escape pathway of Drosophila has been established as a model for analyzing habituation and its modification by memory mutations in an identified circuit. Several genes in Drosophila encoding K+ channel subunits have been characterized, permitting examination of the contributions of specific channel subunits to simple conditioning in an identified circuit that is amenable to genetic analysis. Our results show that mutations altering each of four K+ channel subunits (Sh, slo, eag, and Hk) have distinct effects on habituation at least as strong as those of dunce and rutabaga, memory mutants with defective cAMP metabolism (). Habituation, spontaneous recovery, and dishabituation of the electrically stimulated long-latency giant fiber pathway response were shown in each mutant type. Mutations of Sh (voltage-gated) and slo (Ca2+-gated) subunits enhanced and slowed habituation, respectively. However, mutations of eag and Hk subunits, which confer K+-current modulation, had even more extreme phenotypes, again enhancing and slowing habituation, respectively. In double mutants, Sh mutations moderated the strong phenotypes of eag and Hk, suggesting that their modulatory functions are best expressed in the presence of intact Sh subunits. Nonactivity-dependent responses (refractory period and latency) at two stages of the circuit were altered only in some mutants and do not account for modifications of habituation. Furthermore, failures of the long-latency response during habituation, which normally occur in labile connections in the brain, could be induced in the thoracic circuit stage in Hk mutants. Our work indicates that different K+ channel subunits play distinct roles in activity-dependent neural plasticity and thus can be incorporated along with second messenger "memory" loci to enrich the genetic analysis of learning and memory.  相似文献   

13.
Hydraulically Efficient Power-Law Channels   总被引:2,自引:0,他引:2  
A power-law channel is a generalized form of a channel and includes parabolic and triangular cross sections. For an exponent m<0.5 in the power law, the relative wetted perimeter has been estimated from a series expansion truncated to four terms. For values of the exponent m ≥ 0.5 the relative wetted perimeter has been estimated using an appropriate non-linear interpolation expression. A table to estimate relative wetted perimeter based on these expressions is presented for design purposes. With these expressions for relative wetted perimeter, and using the Lagrange method of undetermined multipliers, for any given maximum side slope, the area and/or wetted perimeter is minimized subject to the equality constraint of a uniform flow (Mannings) equation. Using this technique, for any given side slope, the exponent of the power-law channel can be determined and hydraulically efficient power-law channels can be designed. Optimized power-law channels are compared with trapezoidal and parabolic channels. The existing parabolic design of the Pehur High Level Canal, Pakistan is compared with an optimum power-law channel.  相似文献   

14.
A volume-regulated chloride current (ICl.vol) is ubiquitously present in mammalian cells, and is required for the regulation of electrical activity, cell volume, intracellular pH, immunological responses, cell proliferation and differentiation. However, the molecule responsible for ICl.vol has yet to be determined. Although three putative chloride channel proteins expressed from cloned genes (P-glycoprotein, pICln and ClC-2 ) have been proposed to be the molecular equivalent of ICl.vol, neither P-glycoprotein nor pICln is thought to be a chloride channel or part thereof, and the properties of expressed ClC-2 channels differ from native ICl.vol. Here we report that functional expression in NIH/3T3 cells of a cardiac clone of another member of the ClC family, ClC-3, results in a large basally active chloride conductance, which is strongly modulated by cell volume and exhibits many properties identical to those of ICl.vol in native cells. A mutation of asparagine to lysine at position 579 at the end of the transmembrane domains of ClC-3 abolishes the outward rectification and changes the anion selectivity from I- > Cl- to Cl- > I- but leaves swelling activation intact. Because ClC-3 is a channel protein belonging to a large gene family of chloride channels, these results indicate that ClC-3 encodes ICl.vol in many native mammalian cells.  相似文献   

15.
16.
Recombinant human cystic fibrosis transmembrane conductance regulator (CFTR) has been produced in a Saccharomyces cerevisiae expression system used previously to produce transport ATPases with high yields. The arrangement of the bases in the region immediately upstream from the ATG start codon of the CFTR is extremely important for high expression levels. The maximal CFTR expression level is about 5-10% of that in Sf9 insect cells as judged by comparison of immunoblots. Upon sucrose gradient centrifugation, the majority of the CFTR is found in a light vesicle fraction separated from the yeast plasma membrane in a heavier fraction. It thus appears that most of expressed CFTR is not directed to the plasma membrane in this system. CFTR expressed in yeast has the same mobility (ca. 140 kDa) as recombinant CFTR produced in Sf9 cells in a high resolution SDS-PAGE gel before and after N-glycosidase F treatment, suggesting that it is not glycosylated. The channel function of the expressed CFTR was measured by an isotope flux assay in isolated yeast membrane vesicles and single channel recording following reconstitution into planar lipid bilayers. In the isotope flux assay, protein kinase A (PKA) increased the rate of 125I- uptake by about 30% in membrane vesicles containing the CFTR, but not in control membranes. The single channel recordings showed that a PKA-activated small conductance anion channel (8 pS) with a linear I-V relationship was present in the CFTR membranes, but not in control membranes. These results show that the human CFTR has been expressed in functional form in yeast. With the reasonably high yield and the ability to grow massive quantities of yeast at low cost, this CFTR expression system may provide a valuable new source of starting material for purification of large quantities of the CFTR for biochemical studies.  相似文献   

17.
18.
The gene for hSK4, a novel human small conductance calcium-activated potassium channel, or SK channel, has been identified and expressed in Chinese hamster ovary cells. In physiological saline hSK4 generates a conductance of approximately 12 pS, a value in close agreement with that of other cloned SK channels. Like other members of this family, the polypeptide encoded by hSK4 contains a previously unnoted leucine zipper-like domain in its C terminus of unknown function. hSK4 appears unique, however, in its very high affinity for Ca2+ (EC50 of 95 nM) and its predominant expression in nonexcitable tissues of adult animals. Together with the relatively low homology of hSK4 to other SK channel polypeptides (approximately 40% identical), these data suggest that hSK4 belongs to a novel subfamily of SK channels.  相似文献   

19.
Membrane excitability in different tissues is due, in large part, to the selective expression of distinct genes encoding the voltage-dependent sodium channel. Although the predominant sodium channels in brain, skeletal muscle, and cardiac muscle have been identified, the major sodium channel types responsible for excitability within the peripheral nervous system have remained elusive. We now describe the deduced primary structure of a sodium channel, peripheral nerve type 1 (PN1), which is expressed at high levels throughout the peripheral nervous system and is targeted to nerve terminals of cultured dorsal root ganglion neurons. Studies using cultured PC12 cells indicate that both expression and targeting of PN1 is induced by treatment of the cells with nerve growth factor. The preferential localization suggests that the PN1 sodium channel plays a specific role in nerve excitability.  相似文献   

20.
The generation of pacemaker activity in heart and brain is mediated by hyperpolarization-activated cation channels that are directly regulated by cyclic nucleotides. We previously cloned a novel member of the voltage-gated K channel family from mouse brain (mBCNG-1) that contained a carboxy-terminal cyclic nucleotide-binding domain (Santoro et al., 1997) and hence proposed it to be a candidate gene for pacemaker channels. Heterologous expression of mBCNG-1 demonstrates that it does indeed code for a channel with properties indistinguishable from pacemaker channels in brain and similar to those in heart. Three additional mouse genes and two human genes closely related to mBCNG-1 display unique patterns of mRNA expression in different tissues, including brain and heart, demonstrating that these channels constitute a widely expressed gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号