首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
g-C_3N_4是较为理想的非金属光催化剂之一,但其存在光生电子-空穴复合严重、光催化效率低下等缺点,严重影响了g-C_3N_4在光催化和能源领域内的应用,对其改性,提高光催化效率,就变得尤为迫切。通过高温法将混有Fe~(3+)的g-C_3N_4再次热处理制备Fe~(3+)/g-C_3N_4,并采用X射线衍射分析、X射线光电子能谱、紫外-可见漫反射光谱等对其进行了表征,并以Fe~(3+)/g-C_3N_4为催化剂光解水制氢。结果发现,该法成功制取了Fe~(3+)/g-C_3N_4,其产氢效率较g-C_3N_4提高2倍,达到158.1μmol/(g·h),说明Fe~(3+)掺杂g-C_3N_4能有效地提高氮化碳光催化制氢能力,具有潜在的应用价值。  相似文献   

2.
罗丹明B是一种具有致癌、致突变等作用的难降解的工业污染物,如何高效地降解罗丹明B具有很重要的现实意义。本研究通过模板法和高温法配合制备Fe~(3+)/g-C_3N_4,采用X射线衍射分析、X射线光电子能谱、紫外-可见漫反射光谱等对其进行了表征,并以Fe~(3+)/g-C_3N_4为催化剂光催化降解罗丹明B。结果发现,该法成功制取了Fe~(3+)/g-C_3N_4,其对罗丹明B的降解效率较g-C_3N_4提高3.8倍,经过60min反应,98.3%罗丹明B被降解,说明Fe~(3+)/g-C_3N_4能有效地光催化降解罗丹明B,具有潜在的应用前景。  相似文献   

3.
稀土文章采用水热法合成掺杂不同金属离子的Ti O2:Yb3+/Er3+上转换发光材料。系统的探讨了不同的金属离子对Ti O2:Yb3+/Er3+发光材料发光性能、形貌以及晶型的影响。具体到通过荧光光谱数据分析离子价态、离子半径等对红、绿光性能的影响;通过SEM数据分析掺杂不同金属离子对应样品形貌的变化;通过XRD数据分析掺杂不同金属离子对应样品的晶型的变化。结果表明离子价态以及离子半径都会改变Ti O2:Yb3+/Er3+材料的发光性能,但与Ti O2:Yb3+/Er3+材料发光性能之间不存在线性关系;掺杂不同金属离子不会改变样品的形貌;掺杂不同金属离子得到了纯相的Ti O2:Yb3+/Er3+样品,且不改变样品的晶型。  相似文献   

4.
采用共沉淀法分别合成油性β-NaYF_4:Tb~(3+),Yb~(3+)和β-NaYF_4:Tb~(3+),Yb~(3+)@β-NaYF_4纳米颗粒,通过盐酸酸洗改性处理获得水性β-NaYF_4:Tb~(3+),Yb~(3+)和β-NaYF_4:Tb~(3+),Yb~(3+)@β-NaYF_4纳米核壳结构。表征了油性/水性纳米颗粒的形貌和量子剪裁近红外荧光发射性能。结果表明:制备的油性/水性β-NaYF_4:Tb~(3+),Yb~(3+)纳米颗粒呈球状,油性/水性β-NaYF_4:Tb~(3+),Yb~(3+)@β-NaYF_4纳米颗粒呈棒状;但水性纳米颗粒的尺寸均小于油性的;水性纳米颗粒在水溶液中具有良好的分散性。水性β-NaYF_4:Tb~(3+),Yb~(3+)@β-NaYF_4纳米颗粒溶液相比于相同溶液浓度和稀土掺杂浓度的油性β-NaYF_4:Tb~(3+),Yb~(3+)@β-NaYF_4和水性β-NaYF_4:Tb~(3+),Yb~(3+)纳米颗粒溶液,其量子剪裁荧光分别增强了1.6倍和3.4倍。这是由于β-NaYF_4隔离层的存在,改性既去除了油酸,又不会在发光中心附近产生缺陷,从而得到了较强的量子剪裁荧光。  相似文献   

5.
以稀土氯化物、油酸、1-十八烯等为原料制备出了粒径分别为22 nm和75 nm上转换纳米粒子(UCNPs)β-NaYF_4︰Yb~(3+)/Er~(3+),并采用反相乳液法在上转换纳米粒子上包覆了一层二氧化硅得到了核壳结构的上转换纳米粒子(UCNPs@SiO_2)。使用透射电子显微镜(TEM)、动态光散射法(DLS)、X射线粉末衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、荧光分光光度计对上述材料进行了表征。结果表明:合成出的两种粒径的UCNPs粒径分布均匀,且都是六方相的结构。UCNPs@SiO_2表面的二氧化硅壳层厚薄均匀。UCNPs@SiO_2保持了上转换发光性能并在极性溶剂(如水,乙醇)中表现出良好的分散性。  相似文献   

6.
电化学法合成氨是一种有希望替代传统Haber-Bosch法的新方法,而开发一种能够高效活化N2分子的催化剂成为电化学法合成氨的关键。采用一步煅烧二氰二胺的方法制备了石墨型氮化碳(g-C_3N_4),并将Pt纳米颗粒沉积在g-C_3N_4上制备了Pt/g-C_3N_4。采用XRD、SEM、TEM以及XPS表征和分析了所得催化剂的晶体结构,表面微观形貌和表面元素组成。分别采用H+型Nafion膜和H+/NH+4型Nafion膜作电解质,研究了Pt/g-C_3N_4和g-C_3N_4的催化性能以及Nafion膜中NH+4的作用。结果表明,Pt/g-C_3N_4和g-C_3N_4分别作阴极催化剂时均成功合成出NH3,而Pt/g-C_3N_4的性能优于g-C_3N_4。另外,膜中引入NH+4能够促进N2的电化学还原。  相似文献   

7.
采用一步焙烧的方法制备了新型纳米管复合材料g-C_3N_4/LiNbWO_6。采用粉末X射线衍射(XRD)、紫外-可见漫反射光谱(UV-vis-DRS)对制备的g-C_3N_4/LiNbWO_6及其前驱体进行了表征。以罗丹明B(RhB)为降解物,对纳米复合材料在可见光照射下的光催化氧化性能进行了评价。结果表明,与LiNbWO_6相比,纳米复合材料的吸收波长明显向可见光区移动,在可见光下具有更高的光降解活性。  相似文献   

8.
采用共沉淀法制备了Yb~(3+)/Er~(3+)共掺的Y_2O_3上转换荧光材料,利用X-射线衍射仪(XRD)、扫描电镜(SEM)、荧光光谱仪(以980 nm激光器作为光源)对合成样品的结构、形貌、发光性能进行了表征。分析结果表明:所制备的样品物相与Y_2O_3基质的物相基本一致;在扫描电子显微镜观察下,Y_2O_3:Yb~(3+)/Er~(3+)呈片状;当用980 nm激光激发样品时,可以观测到波长位于525 nm、550 nm处的绿色发射和波长位于660 nm处的红色发射光谱,分别对应于Er~(3+)的2H11/2,4S3/2→4I15/2和4F9/2→4I15/2特征跃迁。  相似文献   

9.
文章中,采用两步法合成了g-C_3N_4-SnO_2复合物。首先,通过热缩聚三聚氰胺来合成g-C_3N_4,再利用水热法合成不同质量比的g-C_3N_4-SnO_2复合光催化剂。利用X射线衍射(XRD),红外光谱(FT-IR),场发射扫描电子显微镜(FE-SEM)和紫外可见漫反射(UV-Vis-DRS)等手段对复合光催化剂进行表征。通过在可见光下检测降解亚甲基蓝(MB)水溶液来评估复合光催化剂的光催化活性。结果表明:复合光催化剂由SnO_2和g-C_3N_4组成,其在可见光区的吸收比纯SnO_2和g-C_3N_4有所提高。随着g-C_3N_4在复合物中含量的增多,光催化活性先增加后降低。其中g-C_3N_4含量为71.5%的复合物光催化活性最佳。其对MB的降解可达到34.4%。分别是纯g-C_3N_4和SnO_2的7.0和10.4倍。并且,通过对目标污染物亚甲基蓝的考察,研究了其光催化作用的机理。  相似文献   

10.
为研究可见光降解有机污染物以解决环境问题,以三聚氰胺为前驱体,采用热聚合法合成了类石墨相氮化碳(g-C_3N_4)光催化剂,并用同样的方法以掺入一定质量比例MnSO_4的三聚氰胺为前驱体,合成了Mn/g-C_3N_4复合光催化剂,使用XRD、UV-Vis DRS、FT-IR、SEM等对制备的光催化剂进行了表征。通过可见光催化降解亚甲基蓝(MB)探究了Mn的掺杂量对光催化活性的影响。研究结果表明,0.5 wt%的Mn掺杂效果最好,降解效率可达28.18%。最后,探究了亚甲基蓝浓度、催化剂用量、反应温度、循环使用次数对复合光催化剂催化性能的影响。  相似文献   

11.
以三聚氰胺为氮源,钛酸丁酯为钛源,采用溶胶-凝胶法制备g-C_3N_4/TiO_2复合光催化材料,通过XRD、FESEM、UV-Vis、激光粒度分析仪对样品进行表征,以光催化降解亚甲基蓝(MB)为探针反应,研究了复合比和焙烧温度对样品可见光催化性能的影响。结果表明,g-C_3N_4/TiO_2复合光催化剂为锐钛矿相和金红石相组成的混合晶型,TiO_2颗粒呈近球形分布于片层结构的石墨相C3N4表面,复合材料平均粒径2.17μm,粒度分布均匀,复合后样品的光吸收增强。当g-C_3N_4与TiO_2复合比1.0,焙烧温度450℃时,在32 W普通日光灯下g-C_3N_4/TiO_2对MB的降解率达到93.3%。  相似文献   

12.
将有序介孔碳材料(OMC)按照一定的质量比例(0.01、0.02、0.04、0.08)加入石墨型氮化碳材料(g-C3N4)再低温煅烧获得了介孔碳/石墨型氮化碳复合材料(OMC/g-C3N4)。可见光下光催化降解2,4-氯酚的实验结果表明,有序介孔碳材料提高了复合材料的吸附和光催化性能,去除吸附作用后,样品0.04-OMC/g-C3N4的光催化效率为纯氮化碳的3.68倍。降解产物的气相色谱-质谱分析结果表明2,4-氯酚的降解主要是被羟基自由基脱氯和甲基化成其他中间后再被逐步分解完全矿化,Langmuir-Hinshelwood模型分析结果表明其光催化降解过程符合为一级反应动力学。  相似文献   

13.
以氰胺废渣为模板用煅烧法制备g-C_3N_4,采用比表面积仪、扫描电镜、红外光谱仪、X-ray衍射仪等分析测试手段对形貌和结构表征进行分析,并通过催化H_2O_2降解亚甲基蓝溶液对其催化性能进行探究,实验结果表明:氰胺废渣与双氰胺的质量比为40%催化性能最佳,g-C_3N_4催化H_2O_2降解亚甲基蓝溶液过程中HO~-和·O_2~-自由基是g-C_3N_4和H_2O_2体系的主要氧化自由基,其中O_2~-自由基起主要作用。  相似文献   

14.
以六水硝酸锌、2-甲基咪唑为原料制备氧化锌,分别与尿素、硫脲复合,高温聚合制备ZnO/g-C_3N_4复合材料。利用扫描电子显微镜(SEM)、红外光谱仪(IR)、X射线衍射仪(XRD)对试样进行表征,并对所得试样进行光催化性能测试。光催化测试结果表明,ZnO/g-C_3N_4复合材料比ZnO的光催化性能好,两种不同原料制备的ZnO/g-C_3N_4复合材料催化性能相比,以尿素为原料制备的ZnO/g-C_3N_4复合材料的光催化性能最佳。  相似文献   

15.
以硫脲为前驱体,KNO3为掺杂剂,用热聚合法制备了不同钾离子掺杂量的石墨相氮化碳可见光催化剂。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶红外变换光谱(FT-IR)、紫外可见漫反射(UV-VisDRS)和荧光分光光度计(PL)等分析手段对催化剂的结构和性质进行了一系列表征,并将催化剂在可见光下对亚甲基蓝有机染料水溶液进行光催化降解。结果表明,钾离子的引入没有改变g-C_3N_4的本体结构,钾离子掺杂的系列催化剂吸收边带发生明显的红移现象。实验结果表明,K0.3-C_3N_42 h内对亚甲基蓝的降解率达到94%,表现出最佳的光催化活性;对催化剂进行4次重复性实验后,降解率仍然达到80%左右。  相似文献   

16.
采用溶剂热法制备了一系列β-NaYF_4:18%Yb,X%Ho纳米晶,通过XRD,TEM表征手段研究了Ho~(3+)掺杂对材料晶体结构及形貌的影响规律。980 nm激发下的发射光谱表明,随着Ho~(3+)掺杂浓度的提高,材料的发光强度表现出单调递减的趋势。对比Ho~(3+)与Er~(3+)的能级结构,发现高浓度Ho~(3+)掺杂难以发生自身有效的交叉弛豫过程,故很难实现上转换发射增强。  相似文献   

17.
将SrTi O_3、g-C_3N_4与Bi(NO_3)_3·5H_2O混合煅烧制备了SrTi O_3/g-C_3N_4/Bi_2O_3复合物。对其结构形貌进行了表征,研究了硝酸铋的加入量对样品结构和光催化性能的影响。结果表明:制备的复合物存在异质结结构,降低了光生电子和空穴的复合率,提高了可见光催化活性。当SrTi O_3、g-C_3N_4与Bi(NO_3)_3·5H_2O质量比为4:6:1时,制备的复合物在可见光照射30 min内对NO的去除率达到53.2%。  相似文献   

18.
以一步法原位合成了g-C_3N_4/ZnO异质结复合材料,评价其在可见光下降解亚甲基蓝(MB)的光催化活性,并探讨了g-C_3N_4/ZnO的光催化机制。运用XRD、FTIR、SEM和UV-Vis DRS对所合成的复合材料进行表征。结果表明,经复合后g-C_3N_4和ZnO紧密结合,构建了异质结,提高了光生电子空穴的分离效率,并且在可见光区表现出较强的光响应性;当g-C_3N_4的质量分数为19%时,复合材料g-C_3N_4/ZnO降解MB的反应速率常数为0.020 6 min-1,是纯g-C_3N_4的3.8倍。催化剂重复使用5次,仍保持较高的光催化活性。  相似文献   

19.
通过水热法制备了具有可见光增产氢高性能的g-C_3N_4/Co_3O_4胶体催化剂,采用XRD、TEM、SEM和EDS等分析样品的组成和形貌结构。催化产氢结果表明,光照条件下g-C_3N_4/Co_3O_4胶体催化剂具有极高的催化产氢活性,TOF值高达58.2 min~(-1),通过拟合温度动力学曲线,得到了催化反应的活化能为15.73 kJ·mol~(-1)。对样品进行UV-vis和PL测试发现,g-C_3N_4/Co_3O_4胶体催化剂具有极高的光能利用率和电子-空穴分离率,并进一步阐述了光能促进催化产氢的作用机理。  相似文献   

20.
文章以稀土醋酸盐为原料,采用两种体积比的水和油酸(OA)作为溶剂和表面修饰剂,水热法合成了Na Gd F4:Yb3+/Er3+纳米粒子。实验结果表明:合成的Na Gd F4:Yb3+/Er3+纳米粒子主要为六方相的β-Na Gd F4,具有较好的结晶性,明显的棒状形貌并且展现出强的绿光和红光。当溶剂中水的比例逐渐增大时,纳米粒子的粒径逐渐增大,红光荧光强度基本上未改变,但是绿光荧光强度逐渐减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号