首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrodynamics and heat transfer characteristics were investigated in a slurry bubble column reactor whose diameter was 0.0508 m (ID) and 1.5 m in height. Effects of gas velocity (0.025–0.1 m/s), pressure (0.1–0.7MPa), solid concentration (0–20 vol%) and liquid viscosity (1.0–38.0 mPa s) on the hydrodynamics and heat transfer characteristics were examined. The pressure difference fluctuations were analyzed by means of attractor trajectories and correlation dimension to characterize the hydrodynamic behavior in the column. The gas holdup increased with increasing gas velocity or pressure, but decreased with increasing solid concentration or liquid viscosity. It was found that the attractor trajectories and correlation dimension of pressure fluctuations were effective tools to describe the hydrodynamic behaviors in the slurry bubble column. The heat transfer coefficient increased with increasing pressure or gas velocity, but decreased with increasing solid concentration or viscosity of slurry phase in the slurry bubble column. The heat transfer coefficient value was well correlated in terms of operating variables and correlation dimension of pressure fluctuations in the slurry bubble column.  相似文献   

2.
Flow behavior of wakes has been investigated in a three-phase slurry bubble column of 0.102 m ID and 1.5 m in height. The dependence of wake characteristics such as rising velocity, frequency, holdup and equivalent size on the operating variables was examined by employing an electric resistivity probe method. The gas velocity, liquid viscosity and solid content in the slurry phase were chosen as independent parameters. The rising velocity of wake region increased with an increase in the gas velocity (4.0–12.0 cm/s), liquid viscosity (1.0–50.0 mPa·s) or solid content (0–25 wt%) in the slurry phase. The frequency and holdup of wake phase increased with increasing gas velocity, but decreased with increasing liquid viscosity or solid content in the slurry phase. The equivalent size of wake phase increased with increasing gas velocity, liquid viscosity or solid content in the slurry phase. The wake properties and holdup were well correlated with operation variables within these experimental conditions.  相似文献   

3.
Particle fluctuations and dispersion were investigated in a three-phase (gas–liquid–solid) fluidized bed with an inside diameter of 0.102 m and height of 2.5 m. Effects of gas and liquid velocities, particle size (0.5–3.0 mm), viscosity (1.0–38×10−3 Pa s) and surface tension (52–72×10−3 N/m) of continuous liquid media on the fluctuating frequency and dispersion coefficient of fluidized particles were examined, by adopting the relaxation method base on the stochastic model. The fluctuations and dispersion of fluidized solid particles were successfully analyzed by means of the pressure drop variation with time, which was chosen as a state variable, based on the stochastic model. The fluctuating frequency and dispersion coefficient of particles increased with increasing gas velocity, due to the increase of bubbling phenomena and bed porosity in which particles could move, fluctuate and travel. The frequency and dispersion coefficient of particles showed local maximum values with a variation of liquid velocity. The two values of fluctuating frequency and dispersion coefficient of particles increased with increase in particle size, but decreased with increase in liquid viscosity due to the restricted movement and motion of particles in the viscous liquid medium. Both fluctuating frequency and dispersion coefficient of particles increased with decrease in surface tension of liquid phase, due to the increase of bubbling phenomena with decrease in σL. The values of obtained particle dispersion coefficient were well correlated in terms of dimensionless groups as well as operating variables.  相似文献   

4.
Liquid dispersion in the radial direction was investigated in the riser of a viscous liquid-solid fluidized bed 0.102 m in diameter and 3.5 m in height. Pressure fluctuations in the riser were also measured and analyzed to examine the behavior of fluidized particles. Effects of liquid velocity (0.15–0.45 m/s), solid circulation rate (2–8 kg/m2s), particle size (1–3 mm), and liquid viscosity (0.96–38 mPas) on pressure fluctuations and the liquid radial dispersion coefficient were determined. The infinite space model was employed to obtain the radial dispersion coefficient from the radial concentration profiles of the tracer. The pressure fluctuations were analyzed by means of autocorrelation coefficient as well as power spectral density function. The dominant frequency obtained from the autocorrelation coefficient or power spectral density function of pressure fluctuations decreases with increasing liquid viscosity or liquid velocity, but it increases with increasing particle size. The liquid radial dispersion coefficient decreases with increasing liquid velocity or viscosity, but it increases as the solid circulation rate or particle size increases. The liquid radial dispersion coefficient is related closely to the resultant behavior of fluidized particles. The radial dispersion coefficient has been well correlated with operating variables in terms of dimensionless groups.  相似文献   

5.
Liquid dispersion in the radial direction was investigated in the riser of a viscous liquid-solid fluidized bed 0.102 m in diameter and 3.5 m in height. Pressure fluctuations in the riser were also measured and analyzed to examine the behavior of fluidized particles. Effects of liquid velocity (0.15-0.45 m/s), solid circulation rate (2-8 kg/m2s), particle size (1-3 mm), and liquid viscosity (0.96-38 mPas) on pressure fluctuations and the liquid radial dispersion coefficient were determined. The infinite space model was employed to obtain the radial dispersion coefficient from the radial concentration profiles of the tracer. The pressure fluctuations were analyzed by means of autocorrelation coefficient as well as power spectral density function. The dominant frequency obtained from the autocorrelation coefficient or power spectral density function of pressure fluctuations decreases with increasing liquid viscosity or liquid velocity, but it increases with increasing particle size. The liquid radial dispersion coefficient decreases with increasing liquid velocity or viscosity, but it increases as the solid circulation rate or particle size increases. The liquid radial dispersion coefficient is related closely to the resultant behavior of fluidized particles. The radial dispersion coefficient has been well correlated with operating variables in terms of dimensionless groups.  相似文献   

6.
The effects of gas (0.02-0.1 m/s) and liquid velocities (0.0-0.10 m/s) on the bubble properties and pressure fluctuations have been determined in a 0.376 m-IDx 2.1 m-high bubble column. The pressure fluctuations have been analyzed by resorting to the Fractal analysis; the time series of pressure fluctuation signals have been analyzed by means of the Rescaled range analysis and the Hurst exponent has been obtained. The bubble chord length and its rising velocity increase but the Hurst exponent decreases with increasing gas velocity. Whereas, the bubble chord length decreases, but the Hurst exponent increases with an increase in liquid velocity in the continuous bubble column (UL>0.02 m/s). The Hurst exponent has been found to have a definite relationship with the bubble chord length and its standard deviation.  相似文献   

7.
Characteristics of heat transfer were investigated in a three-phase circulating fluidized bed whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of gas and liquid velocities, particle size (0.5–3.0 mm), solid circulation rate (2.0–6.5 kg/m2 s), and surface tension (47.53–72.75×10−3 N/m) of liquid phase on the heat transfer coefficient were examined. It was found that the heat transfer coefficient (h) between the immersed vertical heater and the riser proper of the three-phase circulating fluidized bed increased with increase in gas and liquid velocities, but did not change considerably with a further increase in liquid velocity, even in the higher range. The value of heat transfer coefficient increased gradually with increase in the size of fluidized solid particles without exhibiting the local minimum, which represented that there was no bed contraction in three-phase circulating fluidized beds due to the higher liquid velocity. The heat transfer system could attain a stabilized condition more easily with increase in particle size. The value of heat transfer coefficient increased with increase in solid circulation rate in all the cases studied due to the increase of solid holdup in the riser. The value of heat transfer coefficient decreased with increase in surface tension of liquid phase, due to the decrease of bubbling phenomena and bubble holdup. The decrease in liquid surface tension could lead to an increase in elapsed time from which the temperature difference between the heater surface and the riser became an almost constant value. The experimentally obtained values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.  相似文献   

8.
Transient behavior of a bed collapsing after cut-off of gas supply into a three-phase fluidized bed was determined in a 0.21 m-diameter half-tube acrylic column having a test section 1.8 m high. The transient behavior of the bed collapse after cut-off of the gas supply to the beds was monitored by a video camera (30 frames/s). A theory was developed to account for the dynamic behavior of the bed collapse after the gas supply shut-off to three-phase fluidized beds. The bubble drift velocity was theoretically calculated by gas and liquid phase holdups at steady state condition. At a liquid velocity of 0.103 m/s and gas velocity of 0–0.023 m/s, bubble size was uniform in the dispersed bubble flow regime. However, as the gas velocity increased above 0.023 m/s, the discrete or coalesced bubble flow regime could be observed. The agreement between the predicted and experimental values is acceptable in the dispersed bubble flow regime, but the agreement becomes poorer with increasing gas velocity.  相似文献   

9.
According to literature, few experiments are performed in organic solvents which are mostly used in commercial gas-liquid reactors. However, it is commonly accepted that data obtained in aqueous solution allow to predict the surface tension effects, and to model the behaviour of organic solvents. In this work, we examine the validity of this approximation.In this objective, the flows observed in two pure media having similar viscosity but different surface tension—respectively, water (reference) and cyclohexane (solvent)—are successively compared at two scales: in a bubble column and in bubble plumes.In bubble plumes, as expected, the mean bubble size is smaller in the medium having the smallest surface tension (cyclohexane), but for this medium the destabilisation of flow is observed to occur at smaller gas velocity, due to break-up and coalescence phenomena. In bubble column, these phenomena induce the bubbling transition regime at lower gas velocity, whatever the operating conditions for liquid phase: batch or continuous. Consequently, when the two media are used at similar gas superficial velocity, but in different hydrodynamic regimes, greater gas hold-up and smaller bubble diameter can be observed in water; the interfacial area is then not always higher in cyclohexane.This result differs from the behaviour observed in the literature for aqueous solutions. The analysis of bubble plumes in aqueous solutions of butanol shows that this difference is due to a fundamental difference in coalescent behaviour between pure solvents and aqueous mixtures: the surface tension effect is less important in pure liquid than in aqueous solutions, because of the specific behaviour of surfactants.It is then still difficult to predict a priori the bubbling regime or the flow characteristics for a given medium, and all the more to choose an appropriate liquid as a model for industrial solvents.  相似文献   

10.
Hydrodynamic studies were conducted in gas-liquid-solid systems (0.1 m ID, 2 m high) of 3.0 mm glass beads and of 2.1 mm polypropylene low-density particles, with particles densities of 2471 and 1290 kg/m3, respectively. Simultaneous measurement of differential pressure and bubble conductivity probe signals sampled at 500 Hz for 60 s enabled the investigation of the change in flow structure in relation to the flow regime transitions. Superficial gas velocities ranged between 0.010 and 0.052 m/s for polypropylene particles, and extended to 0.12 m/s for glass beads, while the superficial liquid velocities covered the ranges of 0.0007-0.045 m/s for polypropylene particles, and ranged up to 0.056 m/s for glass beads.Spectral analysis of the pressure fluctuations revealed a transition from dispersed to coalesced bubbling flow with decreasing liquid velocity for a given superficial gas velocity. The use of a conductivity probe facilitated characterization of the local flow structure in terms of bubble movement. The measurements were extensively analyzed using fractals and chaos, power spectra frequency analysis and wavelet decomposition in addition to the standard statistical analyses. The coefficient of variation of the bubble probe signals was found to be the most effective in deducing the transition velocity between coalesced and dispersed bubbling flow regimes, while wavelet energy confirmed the similarity in the distribution between two axial positions once operated in the dispersed flow regime. Comparison of the flow structure between glass beads and polypropylene particles showed that both the minimum liquid fluidization velocity and the transition velocity between the bubble flow regimes were much higher for the glass beads than for the lighter polypropylene particles. Furthermore, the standard deviations of the decomposed bubble probe signals through wavelet transformation successfully highlighted the difference between the two systems of particles.  相似文献   

11.
The hydrodynamic performance of three internal airlift reactor configurations was studied by the Eulerian–Eulerian k–ε model for a two‐phase turbulent flow. Comparative evaluation of different drag and lift force coefficient models in terms of liquid velocity in the riser and downcomer and gas holdup in the riser was highlighted. Drag correlations as a function of Eötvös number performed better results in comparison to the drag expressions related to Reynolds number. However, the drag correlation as a function of both Reynolds and Eötvös numbers fitted well with experimental results for the riser gas holdup and downcomer liquid velocity in configurations I and II. Positive lift coefficients increase the liquid velocity and decrease the riser gas holdup, while opposite results were obtained for negative values. By studying the effects of bubble size and their shape, the smaller bubbles provide a lower liquid velocity and a gas holdup. The effects of bubble‐induced turbulence and other non‐drag closure models such as turbulent dispersion and added mass forces were analysed. The gas velocity and gas holdup distributions, liquid velocity in the riser and downcomer, vectors of velocity magnitude and streamlines for liquid phase, the dynamics of gas holdup distribution and turbulent viscosity at different superficial gas velocities for different reactor configurations were computed. The effects of various geometrical parameters such as the draft tube clearance and the ratio of the riser to the downcomer cross‐sectional area on liquid velocities in the riser and the downcomer, the gas velocity and the gas holdup were explored. © 2011 Canadian Society for Chemical Engineering  相似文献   

12.
Characteristics of heat transfer were investigated in pressurized slurry bubble column reactors whose diameter was either 0.051, 0.076, 0.102 or 0.152 m (ID) and 1.5 m in height, respectively. Effects of gas velocity (U G ), solid contents (S C ), pressure (P), liquid viscosity (μ L ) and column diameter (D) on the heat transfer coefficient (h) between the immersed vertical heater and the column were determined. Multiple effects such as UG and D, P and D, μ L and D, and S C and D on the value of heat transfer coefficient were discussed. Temperature fluctuations were also measured and analyzed by adapting chaos theory, which was used to explain the effects of operating variables on the heat transfer in the column. The heat transfer coefficient increased with increasing gas velocity, pressure or solid content in the slurry phase, but decreased with increasing liquid viscosity or column diameter. The decrease trend of h with increasing column diameter was somewhat sensitive when the gas velocity was relatively high (U G ⩾12 cm/s). The effects of column diameter on the h value became almost linear when the operating pressure (P=4−10 kg f /cm2), liquid viscosity (μ L =20−38 mPa·s) or solid content in the slurry phase (S C =10−20 wt%) was relatively high and gas velocity was relatively low, within these experimental conditions. The heat transfer coefficient was well correlated in terms of dimensionless groups as well as operating variables.  相似文献   

13.
For the practical application of a three-phase bubble column as a reactor in the dehydration of ortho-boric acid, we investigated the bubble distribution and its effects on the reaction in a three-phase bubble column reactor (0.102 m IDx2.0 m in height) operating at relatively low pressure (below the atmospheric pressure). Effects of reaction time, temperature, gas velocity, particle size and gas injection mode (even, wall-side, central and asymmetric distribution) on the fractional conversion of the reaction were determined. The complicated bubble distribution as well as bubbling phenomena in the reactor were diagnosed and interpreted by means of the attractor trajectories and correlation dimension which were obtained from the resultant pressure fluctuations. The fractional conversion was closely related to the attractor shape or correlation dimension of the pressure fluctuations in the reactor. The fractional conversion in the case of even distribution of gas injection exhibited the highest value in all cases studied, at which the attractor of pressure fluctuations was less scattered in the phase space, while their correlation dimension had the lowest value. When the gas was injected by means of wall-side distribution, the conversion level was higher than that in case of central or asymmetric distribution mode. Although a fluid-solid heterogeneous reaction model can be applicable to the reaction, deviations from the model become considerable when the gas injection mode changes from even to wall-side, central or asymmetric mode, orderly.  相似文献   

14.
The flow in a gas–liquid–solid circulating fluidized bed is self‐organised and manifests itself with clustering of particles and bubbles. The clustering behaviour in the fluidized bed at low solid holdups of resin particles was experimentally investigated with a high‐speed image measurement and treatment technique of complementary metal oxide semiconductor to enhance the fundamental understanding on such a flow. Several new physical quantities were suggested to characterise such ordered flow structures. The main findings are as follows. The clusters of solid particles largely exist as doublets and triplets, the mixed groups of particles and bubbles mostly exist as one bubble carrying two to four particles. Increasing superficial liquid velocity, particle diameter or density weakens the aggregation degrees of both particle and mixed clusters in the riser and downer, except that the increase of superficial liquid velocity enhances the mixed clustering behaviour in the riser. The climbing of the auxiliary liquid velocity or liquid phase viscosity intensifies the aggregation behaviour, except that the increase of liquid phase viscosity reduces the mixed clustering degree in the riser. The influences of superficial gas velocity and surface tension of liquid phase on the clustering behaviour seem to be a little complex and the trends are not simply increasing or decreasing. The life cycle of solid particle clusters in the GLS riser is not sensitive to the operation conditions, being around 0.07 s. The mixed clusters' life cycle is more sensitive to the conditions and physical properties of phases, changing from 0.02 to 0.07 s.  相似文献   

15.
Bubble size and rising velocity in freely bubbling liquid-gas and three phase fluidized beds have been measured by means of movie photography. Three solids (1–6 mm), a variety of liquids, and air were employed as the three phases.Both bubble size and rising velocity were found to increase with gas velocity but were relatively insensitive to the liquid velocity, viscosity, and surface tension. At the high gas rates employed, the bubble characteristics were independent of particle size. Correlations are presented for calculating bubble size and rising velocity.  相似文献   

16.
A new model for the liquid circulation rates in airlift reactor (ALR) is presented. The model is based on the energy balance for the flow loop (riser, turn riser‐downcomer, downcomer, and turn downcomer‐riser) coupled with a drift flux theory of two‐phase flow gas‐liquid system, considering a bubbly flow regime. The predicted values of the liquid circulation rates by the developed model are compared with experimental results performed in a 22 dm3 internal loop airlift reactor and with the results obtained in the literatures. The proposed model predicted the experimental results very well. Slip velocity relationship based on the drift flux model was proposed; including the gas holdup, bubble size and the liquid physical properties. The predicted slip velocity was similar to that obtained from the literature. The study revealed that appropriate arrangements of internal bioreactor parts can positively influence the liquid circulation velocity at the same energy consumption. The proposed models are useful in the design; scale up and characterization of the internal loop airlift reactors, and provides a direct method of predicting hydrodynamic behaviour in gas‐liquid airlift reactors.  相似文献   

17.
Axial dispersion coefficients in three-phase fluidized beds have been measured in a 0.152 m-ID x 1.8 m high column by the two points measuring technique with the axially dispersed plug flow model. The effects of liquid velocity (0.05–0.13 m/s), gas velocity (0.02–0.16 m/s) and particle size (3-8 mm) on the axial dispersion coefficient at the different axial positions (0.06–0.46 m) in the bed have been determined. The axial dispersion coefficient increases with increasing gas velocity but it decreases with an increase in particle size and exhibits a maximum value with an increase in the axial position from the distributor. The axial dispersion coefficients in terms of the Peclet number have been correlated in terms of the ratio of fluid velocities, the ratio of the panicle size to column diameter, and the dimensionless axial position in the bed based on the isotropic turbulence theory.  相似文献   

18.
Flow properties of gas phase reactants such as size, rising velocity and frequency were investigated in simulated three-phase slurry bubble column reactors. Effects of gas velocity, reactor pressure, liquid viscosity, solid content in the slurry phase and column diameter on the flow properties of a gas reactant were determined. The multiple effects of operating variables on the bubble properties were well visualized by means of contour maps. The effects of operating variables on the flow properties of bubbles changed with changing column diameter of the reactor. The size, rising velocity and frequency of reactant gas bubbles were well correlated in terms of operating variables including column diameter of the reactor. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

19.
The external loop airlift reactor(EL-ALR) is widely used for gas-liquid reactions. It's advantage of good heat and mass transfer rates compared to conventional bubble column reactors. In the case of fermentation application where a medium is highly viscous and coalescing in nature, internal in riser helps in the improvement of the interfacial area as well as in the reduction of liquid-phase back mixing. The computational fluid dynamic(CFD) as a tool is used to design and scale-up of sectionalized external loop airlift reactor. The present work deals with computational fluid dynamics(CFD) techniques and experimental measurement of a gas hold-up, liquid circulation velocity, liquid axial velocity, Sauter mean bubble diameter over a broad range of superficial gas velocity 0.0024≤U_G≤0.0168 m·s~(-1). The correlation has been made for bubble size distribution with specific power consumption for different plate configurations. The effects of an internal on different mass transfer models have been completed to assess their suitability.The predicted local mass transfer coefficient has been found higher in the sectionalized external loop airlift reactor than the conventional EL-ALR.  相似文献   

20.
The effect of an air distributor on the fluidization characteristics of 1 mm glass beads has been determined in a conical gas fluidized bed (0.1 m-inlet diameter and 0.6 m in height) with an apex angle of 20‡. To determine the effect of distributor geometry, five different perforated distributors were employed (the opening fraction of 0.009–0.037, different hole size, and number). The differential bed pressure drop increases with increasing gas velocity, and it goes from zero to a maximum value with increasing or decreasing gas velocity. From the differential bed pressure drop profiles with the distributors having different opening fractions, demarcation velocities of the minimum and maximum velocities of the partial fluidization, full fluidization, partial defluidization and the full defluidization are determined. Also, bubble frequencies in the conical gas fluidized beds were measured by an optical probe. In the conical bed, the gas velocity at which the maximum bed pressure drop attained increases with increasing the opening fraction of distributors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号