共查询到20条相似文献,搜索用时 0 毫秒
1.
1. We have studied the effects of hypoxia on membrane potential and [Ca2+]i in enzymically isolated type I cells of the neonatal rat carotid body (the principal respiratory O2 chemosensor). Isolated cells were maintained in short term culture (3-36 h) before use. [Ca2+]i was measured using the Ca(2+)-sensitive fluoroprobe indo-1. Indo-1 was loaded into cells using the esterified form indo-1 AM. Membrane potential was measured (and clamped) in single isolated type I cells using the perforated-patch (amphotericin B) whole-cell recording technique. 2. Graded reductions in PO2 from 160 Torr to 38, 19, 8, 5 and 0 Torr induced a graded rise of [Ca2+]i in both single and clumps of type I cells. 3. The rise of [Ca2+]i in response to anoxia was 98% inhibited by removal of external Ca2+ (+1 mM EGTA), indicating the probable involvement of Ca2+ influx from the external medium in mediating the anoxic [Ca2+]i response. 4. The L-type Ca2+ channel antagonist nicardipine (10 microM) inhibited the anoxic [Ca2+]i response by 67%, and the non-selective Ca2+ channel antagonist Ni2+ (2 mM) inhibited the response by 77%. 5. Under voltage recording conditions, anoxia induced a reversible membrane depolarization (or receptor potential) accompanied, in many cases, by trains of action potentials. These electrical events were coincident with a rapid rise of [Ca2+]i. When cells were voltage clamped close to their resting potential (-40 to -60 mV), the [Ca2+]i response to anoxia was greatly reduced and its onset was much slower.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
M Hirafuji A Nezu Y Kanai T Ebihara F Kawahara A Tanimura M Minami 《Canadian Metallurgical Quarterly》1998,99(3):305-319
The present study elucidated the precise mechanism of 5-hydroxytryptamine (5-HT)-induced increase of intracellular Ca2+ concentration ([Ca2+]i) in cultured vascular smooth muscle cells isolated from rat aortic media. [Ca2+]i was measured using fluorescent Ca2+ indicator, fura-2. 5-HT caused a dose-dependent increase in [Ca2+]i, which was completely inhibited by ketanserin. alpha-Methyl-5-HT had an equipotent effect to 5-HT. Diltiazem at 10 microM partially suppressed the 5-HT-induced increase in [Ca2+]i. 5-HT also augmented Mn2+ influx, when monitored by Mn2+ quenching of fura-2 fluorescence. When extracellular Ca2+ (1.3 mM) was removed, a decrease in resting level and a small, transient increase in [Ca2+]i were observed. 5-HT stimulation also induced an increase in the production of inositol triphosphate. 5-HT-induced increase in [Ca2+]i was significantly, but partially inhibited by staurosporin and H-7. Phorbol 12-myristate 13-acetate induced an increase in [Ca2+]i, which was abolished by removal of extracellular Ca2+. 5-HT-induced increase in [Ca2+]i was not affected by the pretreatment with pertussis toxin (PTX), and was not accompanied by a change in cyclic AMP content. These results suggest that, in cultured rat aortic smooth muscle cells, 5-HT increases [Ca2+]i via 5-HT2 receptor subtype by inducing influx of extracellular Ca2+ partially through L-type voltage-dependent Ca2+ channel, as well as by mobilizing Ca2+ from its intracellular stores. Activation of protein kinase C may be positively involved in the regulatory mechanism of Ca2+ influx, but PTX-sensitive G protein and cyclic AMP seem to be not involved. 相似文献
3.
The effect(s) of a prototypic intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), on glutamate-induced neurotoxicity was investigated in primary cultures of mouse cerebellar granule cells. Glutamate evoked an increase in cytosolic free-Ca2+ levels ([Ca2+]i) that was dependent on the extracellular concentration of Ca2+ ([Ca2+]o). In addition, this increase in [Ca2+]i correlated with a decrease in cell viability that was also dependent on [Ca2+]o. Glutamate-induced toxicity, quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, was shown to comprise two distinct components, an "early" Na+/Cl(-)-dependent component observed within minutes of glutamate exposure, and a "delayed" Ca(2+)-dependent component (ED50 approximately 50 microM) that coincided with progressive degeneration of granule cells 4-24 h after a brief (5-15 min) exposure to 100 microM glutamate. Quantitative analysis of cell viability and morphological observations identify a "window" in which TMB-8 (at > 100 microM) protects granule cells from the Ca(2+)-dependent, but not the Na+/Cl(-) -dependent, component of glutamate-induced neurotoxic damage, and furthermore, where TMB-8 inhibits glutamate-evoked increases in [Ca2+]i. These findings suggest that Ca2+ release from a TMB-8-sensitive intracellular store may be a necessary step in the onset of glutamate-induced excitotoxicity in granule cells. However, these conclusions are compromised by additional observations that show that TMB-8 (1) exhibits intrinsic toxicity and (2) is able to reverse its initial inhibitory action on glutamate-evoked increases in [Ca2+]i and subsequently effect a pronounced time-dependent potentiation of glutamate responses. Dantrolene, another putative intracellular Ca2+ antagonist, was completely without effect in this system with regard to both glutamate-evoked increases in [Ca2+]i and glutamate-induced neurotoxicity. 相似文献
4.
BACKGROUND: Our objective was to elucidate the direct effects of fentanyl and morphine on cardiac excitation-contraction coupling using individual, field-stimulated rat ventricular myocytes. METHODS: Freshly isolated myocytes were loaded with fura-2 and field stimulated (0.3 Hz) at 28 degrees C. Amplitude and timing of intracellular Ca2+ concentration (at a 340:380 ratio) and myocyte shortening (video edge detection) were monitored simultaneously in individual cells. Real time Ca2+ uptake into isolated sarcoplasmic reticulum vesicles was measured using fura-2 free acid in the extravesicular compartment. RESULTS: The authors studied 120 cells from 30 rat hearts. Fentanyl (30-1,000 nM) caused dose-dependent decreases in peak intracellular Ca2+ concentration and shortening, whereas morphine (3-100 microM) decreased shortening without a concomitant decrease in the Ca2+ transient. Fentanyl prolonged the time to peak and to 50% recovery for shortening and the Ca2+ transient, whereas morphine only prolonged the timing parameters for shortening. Morphine (100 microM), but not fentanyl (1 microM), decreased the amount of Ca2+ released from intracellular stores in response to caffeine in intact cells, and it inhibited the rate of Ca2+ uptake in isolated sarcoplasmic reticulum vesicles. Fentanyl and morphine both caused a downward shift in the dose-response curve to extracellular Ca2+ for shortening, with no concomitant effect on the Ca2+ transient. CONCLUSIONS: Fentanyl and morphine directly depress cardiac excitation-contraction coupling at the cellular level. Fentanyl depresses myocardial contractility by decreasing the availability of intracellular Ca2+ and myofilament Ca2+ sensitivity. In contrast, morphine depresses myocardial contractility primarily by decreasing myofilament Ca2+ sensitivity. 相似文献
5.
Contraction and intracellular calcium ([Ca2+]i) transients were recorded using a video edge detector and fluorescence spectrophotometry, respectively, in rat ventricular myocytes at 22-24 degreesC stimulated at a frequency of 1 Hz. Application of the F-actin disrupter cytochalasin-D (Cyt-D) caused a large reduction in the amplitude of contraction and a small increase in the [Ca2+]i transient. These responses began within a few seconds of application and were complete after 2 min of exposure. Phase-plane relationships of contraction and [Ca2+]i were consistent with cytochalasin-D causing a decrease in myofilament responsiveness to Ca2+. 相似文献
6.
Na, K and Ca currents and other electrophysiological characteristics of cultured neonatal rat superior cervical sympathetic neurons were studied using whole cell clamp technique. The mean passive and active membrane properties measured are as follows: resting membrane potential, -51 +/- 6 mV; input resistance, 1432 +/- 389 M omega; time constant, 130 +/- 32 ms; amplitude of action potential, 96 +/- 10 mV; overshoot, 42 +/- 6 mV. Na, K and Ca currents were isolated upon pharmacological manipulations. The predominant type of K current was a noninactivating delayed rectifier. Voltage-clamp studies also showed the presence of a high voltage-activated sustained inward Ca current, while low voltage could not elicit any transient Ca current. 相似文献
7.
U Russ C Balser W Scholz U Albus HJ Lang A Weichert BA Sch?lkens H G?gelein 《Canadian Metallurgical Quarterly》1996,433(1-2):26-34
The inhibitors of the Na+/H+-exchange (NHE1) system Hoe 694 and Hoe 642 possess cardioprotective effects in ischaemia/reperfusion. It is assumed that these effects are due to the prevention of intracellular sodium (Nai) and calcium (Cai) overload. The purpose of the present study was to investigate the effects of Hoe 642 on intracellular pH, Na+ and Ca2+ (pHi, Nai and Cai) in isolated rat ventricular myocytes under anoxic conditions or in cells in which oxidative phosphorylation had been inhibited by 1.5 mmol/l cyanide. In cells which were dually loaded with the fluorescent dyes 2, 7-biscarboxyethyl-5,6-carboxyfluorescein (BCECF) and Fura-2, anoxia caused acidification of the cells (from pHi 7.2 to pHi 6.8) and an increase in Cai from about 50 nmol/l to about 1 micromol/l. The decrease in pHi began before the cells underwent hypoxic (rigor) contracture, whereas Cai only began to rise after rigor shortening had taken place. After reoxygenation, pHi returned to its control value and Cai oscillated and then declined to resting levels. It was during this phase that the cells rounded up (hypercontracture). When 10 micromol/l Hoe 642 was present from the beginning of the experiment, pHi and Cai were not significantly different from control experiments. At reoxygenation, pHi did not recover, but Cai oscillated and returned to its resting level. To monitor Nai, the cells were loaded with the dye SBFI. After adding 1.5 mmol/l cyanide or 100 micromol/l ouabain, Nai increased from the initial 8 mmol/l to approximately 16 mmol/l. Hoe 642 or Hoe 694 (10 micromol/l) did not prevent the increase in Nai. In contrast, the blocker of the persistent Na+ current R56865 (10 micromol/l) attenuated the CN--induced rise in Nai. The substance ethylisopropylamiloride was not used because it augmented considerably the intensity of the 380 nm wavelength of the cell's autofluorescence. In conclusion, the specific NHE1 inhibitor Hoe 642 did not attenuate anoxia-induced Cai overload, nor CN--induced Nai and Cai overload. Hoe 642 prevented the recovery of pHi from anoxic acidification. This low pHi maintained after reoxygenation may be cardioprotective. Other possible mechanisms of NHE1 inhibitors, such as prevention of Ca2+ overload in mitochondria, cannot be ruled out. The increase in Nai during anoxia is possibly due to an influx of Na+ via persistent Na+ channels. 相似文献
8.
JP Hubert MC Burgevin F Terro J Hugon A Doble 《Canadian Metallurgical Quarterly》1998,125(7):1421-1428
Intracellular calcium concentrations in individual rat motoneurones in enriched primary cultures were measured by Indo-1 fluorimetry. Motoneurones in the cultures were characterized morphometrically and by cholineacetyltransferase immunocytochemistry. Depolarization of the cells with glutamic acid or veratridine increased intracellular calcium levels, which returned to baseline only slowly after removal of the depolarizing agent. The use of selective agonists (N-methyl-D-aspartic acid, AMPA, kainic acid, quisqualic acid and 1R-3S-ACPD) and antagonists (MK 801 and CNQX) showed that the excitatory amino acid-evoked responses were mediated by AMPA/kainate receptors rather than by NMDA receptors. Depolarization-evoked calcium transients in motoneurones are blocked by the neuroprotective drug riluzole Calcium transients reflected entry of calcium from without the cell, and their blockade by nitrendipine and lanthanum chloride suggested that this entry took place primarily through voltage-dependent calcium channels. These findings may be relevant for understanding the selective vulnerability of motoneurones to excitotoxicity in amyotrophic lateral sclerosis, and the therapeutic activity of riluzole in the treatment of this disease. 相似文献
9.
KT-362 (5-[3-[2-(3,4-Dimethoxyphenyl)ethyl]aminopropionyl]-2,3,4, 5-tetrahydro-1,5-benzothiazepine fumarate) is an intracellular Ca2+ antagonist. The compound obtained by introducing methyl groups onto the nitrogen (R2) of the side chain of KT-362 showed vasoconstrictive activity. Therefore we synthesized various derivatives, and examined their activities. Substitution at position R2 of the side chain resulted in potent contractile activity, and the optimal alkyl length was two or three carbons. The potency was further increased by the introduction of a chloro group at the R1 position of 2,3,4,5-tetrahydro-1,5-benzothiazepines. One of the synthesized compounds, 8-chloro-5-?N-ethyl-N-[2-(3,4-dimethoxyphenyl)ethyl]aminopropionyl?-2,3,4, 5-tetrahydro-1,5-benzothiazepine fumarate (9b), showed an EC50 value of 3.47 x 10(-8) M for contraction of rabbit iliac artery. The action of compound 9b was antagonized competitively by an H1-histamine receptor antagonist, diphenhydramine, and the pA2 value was 7.82. The maximum constriction was inhibited by a Ca2+ entry blocker, nicardipine, but not by an alpha 1-adrenoreceptor antagonist, prazosin. In a Ca(2+)-free medium, tonic constriction induced by 9b disappeared, and only a phasic constriction was observed. Though this phasic constriction was inhibited by diphenhydramine, it was not inhibited by prazosin or nicardipine. 相似文献
10.
In the ovariectomized (ovx) rat, the nonsteroidal antiestrogens, clomiphene (CLO) and tamoxifen (TAM), at dose levels that prevent development of osteopenia to a degree approaching that of 17beta-estradiol are, in contrast to 17beta-estradiol, only weakly uterotrophic. Metabolites of CLO and TAM might contribute differentially to these effects. Thus, we have evaluated bone protective and uterine effects in ovx rats of two such metabolites: 4-hydroxy CLO, produced by p-hydroxylation of CLO; and 4HTA, produced from TAM by stepwise replacement of its dimethylaminoethyl side chain with an acetic acid moiety, accompanied by p-hydroxylation. Also reported are effects of D4HTA, the dihydrodesethyl derivative of 4HTA previously characterized as a full estrogen mimetic in vitro. Administration of 4-hydroxy CLO (2.5 mg/kg subcutaneously) 5 days/week for 5 weeks to 3-month-old ovx rats resulted in complete prevention of bone loss and suppression of bone turnover to levels comparable to those of intact controls and to those of ovx animals similarly receiving 17beta-estradiol (10 microg/kg). However, uterine weight in animals receiving 4-hydroxy CLO was 64% less than that in 17beta-estradiol-treated animals. Although 4HTA (3.7 mg/kg s.c.) had a modest uterotrophic effect, it did not prevent bone loss associated with ovariectomy. In contrast, D4HTA (3.6 mg/kg s.c.) partially reduced bone turnover indicators and cancellous bone loss in a manner similar in many ways to that observed in TAM-treated ovx animals, but it had no uterotrophic effect. These results suggest that, although 4HTA does not contribute to the bone-protective effect of TAM, 4-hydroxy CLO might augment that of CLO. 相似文献
11.
YY Guan BK Weir LS Marton RL Macdonald H Zhang 《Canadian Metallurgical Quarterly》1998,89(6):1007-1014
The effects of 5-hydroxytryptamine (5-HT) on ethanol-induced gastric mucosal damage and on epithelial and vascular integrity were investigated. Male Sprague-Dawley rats were administered with 5-HT (5 or 10 mg/kg, IP) 30 min prior to the challenge with ethanol (40% v/v, 10 ml/kg, PO). 5-HT dose dependently aggravated ethanol-induced injury in the gastric mucosa. Both xanthine oxidase (XO) and myeloperoxidase (MPO) activities in the mucosa were significantly increased with the high dose of 5-HT, which also potentiated the elevation of these enzyme activities by ethanol. However, the mucosal superoxide dismutase activity was left unaltered. In neutropenic (antineutrophil serum-treated) animals, the ethanol-induced gastric mucosal injury was significantly ameliorated, with or without the pretreatment of 5-HT (10 mg/kg). In addition, the effect of 5-HT on the activity of MPO, but not of XO, was also attenuated in these animals. In the ex vivo gastric chamber study on pentobarbital-anesthetized animals, volume of gastric secretion was significantly decreased in the 5-HT-treated groups, with further reduction after ethanol incubation. Transmucosal potential difference (PD) was significantly reduced in 5-HT-treated rats, which also potentiated the ethanol-induced drop in PD. Nevertheless, 5-HT dose dependently increased mucosal vascular permeability and further enhanced during ethanol incubation. These findings suggest that 5-HT adversely affects the defense mechanisms of the gastric mucosa by reducing the secretory function of the mucosal cells and to weaken the epithelial and vascular integrity. Neutrophil activation appears to be responsible for the detrimental effects of 5-HT partly through the elevation in MPO activity. The increase in mucosal XO activity by 5-HT may induce free radical production and possibly modulate the ulcerogenic processes. 相似文献
12.
T Ichiba N Matsuda N Takemoto S Ishiguro H Kuroda T Mori 《Canadian Metallurgical Quarterly》1998,30(6):1105-1114
The effects of calcium and magnesium ions in cardioplegic solutions on cardioprotection and intracellular calcium ion handling during ischemia and reoxygenation were investigated in cultured neonatal rat myocardial cells. Myocytes were subjected to simulated ischemia for 60 min at 37 degrees C in hyperkalemic cardioplegic solutions containing various concentrations of calcium and magnesium ions, followed by 30 min of reoxygenation. For each Ca2+ concentration (0.1, 0.6, 1.2, or 2.4 mM), the Mg2+ concentration was either 0, 1.2, 8, or 16 mM. The increase in intracellular Ca2+ concentration during ischemia and reoxygenation was suppressed by the addition of magnesium ion, independent of cardioplegic Ca2+ concentration. The recovery of spontaneous contraction rate and enzyme leakage (creatine phosphokinase and lactate dehydrogenase) during both ischemia and reoxygenation correlated with the degree of inhibition of intracellular Ca2+ accumulation. However, in the 0.1 mM Ca2+ groups in which the Mg2+ concentration was greater than 8 mM, the intracellular Ca2+ concentration increased during reoxygenation in a dose-dependent fashion of Mg2+, and was associated with increased enzyme leakage. The findings suggest that in immature cardiac myocytes, the concentrations of Ca2+ and Mg2+ present in cardioplegic solutions control the intracellular Ca2+ concentration during ischemia and reoxygenation, which, in turn, influences the cardioprotective effect of the cardioplegic solution. 相似文献
13.
14.
In a series of experiments aimed to understand the signaling pathways that regulate intracellular pH (pHi) in rat mast cells, the effect of different intracellular mechanisms on the activity of the Na+/H+ exchanger was studied. After promoting an artificial acidification with sodium propionate we determined the variations on pHi rate recovery. pHi was measured with the dye 2, 7-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester. We studied the effect that the inhibition of some cellular exchangers with different drugs induced on pHi. When the Na+/H+ exchanger was inhibited in the presence of amiloride, the recovery rate constant was twofold smaller than the control value. After the recovery, the final pH was lower than the initial value when the cells were treated either with amiloride or with 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid (an anionic antiport inhibitor). No effect was observed when the Na+/K+-ATPase or the Na+/Ca2+ exchanger were inhibited. The suppression of intracellular and extracellular calcium did not induced any change in pHi. The addition of thapsigargin, an activator of capacitative calcium influx, or the phorbol esther 12-O-tetradecanoylphorbol-13-acetate (PMA), a protein kinase C (PKC) activator, increased the activity of the antiporter. Both effects were abrogated by inhibition of the Na+/K+-ATPase with ouabain. The increase in cAMP levels did not affect the effect of PMA on pHi recovery, but it blocked the effect of thapsigargin. Our results indicate that rat mast cells regulate pHi by the combination of some anionic exchanger and the Na+/H+ antiporter. And also that the modulation of this exchanger is the consequence of the connection between different intracellular mechanisms, Na+/K+-ATPase-PKC-calcium, among which cAMP seems not to have a direct role. 相似文献
15.
N Zeng JH Walsh T Kang KG Helander HF Helander G Sachs 《Canadian Metallurgical Quarterly》1996,110(6):1835-1846
BACKGROUND & AIMS: Peripheral regulation of acid secretion depends mainly on stimulation or inhibition of the three major gastric endocrine cells (enterochromaffin-like, gastrin, and somatostatin). The aim of this paper was to define physiological responses of enterochromaffin-like, gastrin, and somatostatin cells in a mixed endocrine cell population by measuring ligand-selective changes of intracellular calcium ([Ca2+]i) in individual cells. METHODS: Endocrine cells were enriched from a rat gastric cell suspension by elutriation, a density-gradient fractionation, and a 48-hour short-term culture. [Ca2+]i responses of individual cells to various ligands such as gastrin/carboxy-terminal cholecystokinin octapeptide and selective cholecystokinin antagonists, carbachol, and gastrin-releasing peptide were monitored using video imaging in a perfusion chamber. Characteristic [Ca2+]i changes distinguished the three cell types, confirmed by immunostaining. RESULTS: All enterochromaffin-like cells respond to cholecystokinin-B receptor stimulation, but only a few respond to carbachol. Gastrin cells respond to both gastrin-releasing peptide and carbachol but not to cholecystokinin-receptor agonists. Somatostatin cells have both stimulatory cholecystokinin-A and cholecystokinin-B receptors and inhibitory muscarinic receptors. All cells have inhibitory somatostatin receptors. CONCLUSIONS: Calcium-signaling responses of gastric endocrine cells are distinctive. This allows individual cell types in a mixed population to be characterized and permits an analysis of the hormones and transmitters that act directly on a specific cell type. 相似文献
16.
The toxicity of different metals on isolated Sertoli cells grown in culture has been investigated. Methyl mercury (CH3HgCl) and mercury chloride (HgCl2) were more toxic than cadmium (CdCl2) which was slightly more toxic than arsenic (As2O3). Isolated peritubular cells and Sertoli cells were equally sensitive to cadmium. Cadmium reduced the Sertoli cell survival over the concentration range of 1--10 microM. Freeze-etch electron microscopy of cadmium-exposed Sertoli cells revealed circular areas of average diameter 500 nm devoid of intramembrane particles in the nuclear membrane, and general signs of degeneration such as vesiculation of the plasma membrane and intramembrane particle aggregation. However, cadmium did not dissolve junctional complexes between Sertoli cells. Isolated Sertoli cells were protected against cadmium-induced damage when the cells were preincubated for 48 h with selenium, zinc or low doses of cadmium. Preincubation with cobalt, FSH, testosterone or oestradiol did not protect against cadmium-induced damage. Cadmium bound to metallothionein had no toxic effects on isolated Sertoli cells. 相似文献
17.
V Mitrovic E Oehm J Thormann H Pitschner W Haberbosch 《Canadian Metallurgical Quarterly》1998,21(7):492-502
BACKGROUND: Tedisamil is a new bradycardic agent proven to exert anti-ischemic and antiarrhythmic effects by blockade of the different cardiac and vascular K+ currents. HYPOTHESIS: It was the aim of the present study to compare the favorable anti-ischemic effects of tedisamil, with two long established representatives in the treatment of coronary artery disease (CAD), namely, the beta1 blocker esmolol and the Ca2 antagonist gallopamil. METHODS: The hemodynamic and neurohumoral effects of the new potassium channel blocker tedisamil, an agent with negative chronotropic and class III antiarrhythmic properties, were compared with the ultra-short-acting beta1-selective adrenoceptor blocker esmolol and the calcium antagonist gallopamil. A total of 22 patients with angiographically proven CAD and reproducible ST-segment depression in the exercise electrocardiogram was included in two studies with an almost identical design and inclusion criteria. The investigation was carried out using right heart catheterization and bicycle ergometry. A subgroup of 8 patients receiving 0.3 mg/kg body weight tedisamil intravenously (i.v.) in an open dose-finding study was compared with a group of 14 patients who had received esmolol (i.v. bolus of 500 micrograms/kg, maintenance dose 200 micrograms/kg/min) and gallopamil (initial dose 0.025 mg/kg, maintenance dose 0.0005 mg/kg/h) in a second intraindividual comparison. RESULTS: Tedisamil and esmolol reduced heart rate at rest by 13% (p < 0.001), and 6% (p < 0.05), and at maximum working levels by 8% (p < 0.01) and 9% (p < 0.05), respectively. Gallopamil increased heart rate at rest by 7% (p < 0.05), with only slight changes occurring during exercise. Corresponding findings for each drug were observed for cardiac output both at rest and during exercise [tedisamil: at rest -10% (NS), max. exercise -8%; esmolol: at rest -14% (NS), max. exercise -18% (NS); gallopamil: no significant changes]. Compared with tedisamil, stroke volume was reduced by esmolol [at rest and max. workload: -9% (NS)] and gallopamil [rest: -6% (NS), max. exercise: -2% (NS)]. Of the indirect parameters of ventricular function, that is, mean capillary wedge pressure (PCWPm) and right ventricular ejection fraction, only PCWPm demonstrated significant differences between tedisamil and gallopamil (+18% and -6% at rest, +17% and -21% during exercise, respectively; p < 0.001). Compared with gallopamil, both tedisamil and esmolol were superior in their effects on rate-pressure product, myocardial oxygen consumption, and ST-segment depression, whereas plasma lactate concentration was more reduced by tedisamil and gallopamil. Tedisamil led to a fall in norepinephrine levels in particular. CONCLUSION: Tedisamil and esmolol showed almost equipotent anti-ischemic effects at the doses administered. Tedisamil acts mainly by reductions in heart rate, and esmolol, though to a lesser degree, also by reductions in systolic blood pressure. The mechanism of gallopamil is to reduce afterload and to improve coronary perfusion. At the doses applied, however, it has lower antianginal potency compared with tedisamil and esmolol. 相似文献
18.
1. The metabolic fate of 14C-CD-349, a new calcium antagonist, was studied in rat and dog. 2. After oral administration of 14C-labelled drug in both species, the plasma levels of radioactivity reached maxima at 1-2 h and declined with elimination half-lives of 6-7 h. In both species, 71-85% of radioactivity was excreted in faeces and 17-27% in urine in 120 h. Biliary excretion in rat after oral doses amounted to 33%. 3. The low ratio of unchanged drug to total radioactivity in plasma suggested that CD-349 underwent rapid metabolism in both species. 4. Twenty-two metabolites were isolated and identified from dog urine and an incubation mixture with 9000 g rat liver supernatant. Principal routes of biotransformation of CD-349 were similar in both species, and involved: (1) oxidation of the dihydropyridine ring to the corresponding pyridine ring; (2) denitration of the nitrate ester; (3) hydrolysis of the carboxy ester to the carboxylic acid; and/or (4) oxidation of the side chain, although quantitative interspecies differences were observed. 相似文献
19.
T Itoh K Takahata K Morimoto N Iwamoto H Ohde 《Canadian Metallurgical Quarterly》1998,50(12):1093-1099
The effects of Selegiline hydrochloride (Selegiline HCl) on the intracellular Ca2+ contents of primarily cultured rat striatal, mesencephalic neuronal cells and PC-12 cells were examined by the use of a Ca2+ imaging analyzer. In the former two cell types, Selegiline HCl (10(-5)-10(-6) M) induced a transient inflow of extracellular Ca2+ through the voltage-dependent N-type Ca2+ channel. In addition, all cells indicating an increase in the intracellular Ca2+ content were found to be catecholaminergic neurons which showed a positive reaction with anti-tyrosine hydroxylase antibodies. Furthermore, a transient intracellular influx of Ca2+ was observed in the NGF-pretreated PC-12 cells. From these results, it is suggested that Selegiline HCl elicits various functions, including antioxidation, activation of neurotrophic factor biosynthesis and neuronal protection probably via an unidentified specific proteins of tyrosine hydroxylase-positive neurons. 相似文献
20.
Schwann cells produce and release trophic factors that induce the regeneration and survival of neurons following lesions in the peripheral nerves. In the present study we examined the in vitro ability of developing rat retinal cells to respond to factors released from fragments of sciatic nerve. Treatment of neonatal rat retinal cells with sciatic-conditioned medium (SCM) for 48 h induced an increase of 92.5 +/- 8.8% (N = 7 for each group) in the amount of total protein. SCM increased cell adhesion, neuronal survival and glial cell proliferation as evaluated by morphological criteria. This effect was completely blocked by 2.5 microM chelerythrine chloride, an inhibitor of protein kinase C (PKC). These data indicate that PKC activation is involved in the effect of SCM on retinal cells and demonstrate that fragments of sciatic nerve release trophic factors having a remarkable effect on neonatal rat retinal cells in culture. 相似文献