首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blends of native starches can be used to obtain special sensory properties avoiding the use of chemically modified starches. The mixture design approach was used to analyze the textural properties (hardness, adhesiveness, cohesiveness and gumminess) of gels obtained with different proportions of yam, corn and cassava starches (6% total solids) and related to microstructural characteristics. Maximum limits of 60% yam starch and 70% corn starch and minimum level of 30% cassava starch were fixed to minimize syneresis under storage. Hardness, adhesiveness and gumminess increased with the proportion of corn starch in the blends. The lowest values of hardness corresponded to the blends containing higher proportions of cassava starch, that has the lowest amylose content. Corn starch was the component that less contributed to cohesiveness. The characteristic high cohesiveness of cassava starch pastes (related to its higher amylopectin content) was reduced when it was mixed in adequate proportions with yam and/or corn starches. Gels containing only yam starch presented syneresis values close to 40% after 24° h storage at 4°C; the decrease of the maximum level of yam starch to 60% as well as the inclusion of cassava starch in the blends reduced weight losses. Disadvantages found in gels containing individual starches, such as exudate in yam and corn starch gels, and excessive cohesiveness in cassava starch gels, are minimized improving their possible applications, when blends are used.  相似文献   

2.
为了研究不同品种鲜食糯玉米的品质特性,对17个不同品种鲜食糯玉米籽粒中的8个内在品质指标(水分、总淀粉、直链淀粉、支链淀粉、总糖、膳食纤维、粗蛋白、粗脂肪)含量和5项主要质构指标(硬度、弹性、内聚性、胶着性、咀嚼性)参数进行测定。通过相关性分析和主成分分析筛选出核心评价指标,在此基础上运用熵权法赋予各指标权重,最后采用灰色关联度法对鲜食糯玉米品质进行综合评价。结果显示,不同鲜食糯玉米品质存在一定差异性,质构指标与内在品质指标中的直链淀粉/支链淀粉含量均呈现较好的相关性;利用主成分分析筛选出4个核心评价指标,分别是支链淀粉含量、总糖含量、水分含量和粗脂肪含量。通过熵权法得到各核心指标的权重,其中支链淀粉含量的权重值最大。灰色关联度分析得出,综合品质较好的品种为万糯2000、苏科糯1702和苏科糯1505。此结果将为鲜食糯玉品质综合评价和品种筛选提供理论支持。  相似文献   

3.
The mechanical properties of the crust and core regions of an immersion-fried corn starch patty containing different amounts of gluten, amylose, and amylopectin were studied after various storage times. Moisture and oil profiles for the different gluten contents were also determined during post-frying storage. The addition of gluten did not affect the hardness of the crust region of the fried samples during storage, but the addition of amylose and amylopectin significantly increased the hardness of the crust. Samples with 5% added amylopectin showed a similar behavior, but in this case the puncture force significantly increased during the first hour of storage and remained constant thereafter. The range of linear viscoelastic behavior for fried corn starch patties in compression was for strains up to 4%. Stress relaxation curves showed that the elasticity of corn starch patties increased with time of storage, but decreased with the addition of gluten. The addition of 5% amylose caused a significant increase in elasticity, whereas with 5% amylopectin, the increase in this variable was less noticeable.  相似文献   

4.
The effects of various reagents on the formation, hardness and solubility of heat-induced gels of soybean 7S, 11S globulins and isolate were studied. Gels were formed in 30 mM Tris HCl buffer (pH 8.0) with or without reagents by heating at 80°C for 30 min. The results indicated that electrostatic interactions and disulfide bonds are involved in the formation of 11S globulin gels; mostly hydrogen bonding in 7S globulin gels and hydrogen bonding and hydrophobic interactions in soy isolate gels. Analyses of the proteins solubilized from the gels indicated that the basic subunits of 11S globulin interact with 7S globulin in soy isolate gels. The contribution of certain acidic subunits to network formation in US soy isolate gels is limited  相似文献   

5.
The extent of corn starch dispersibility and the relative molecular solubility of amylose and amylopectin in methyl sulfoxide (DMSO) were determined. Granular corn starches with <l, 25, 53, and 70% amylose were dispersed in 0–100% DMSO (in water) solutions at 30°C for 30 min. Maximum dispersibility for all starches (98%) was obtained when 90% DMSO/10% water was used; regular (normal) dent corn starch was equally dispersed in solutions with 88–94% DMSO. Molecular solubility, the presence of individual molecules of amylose and amylopectin, of starches was also measured (after centrifugation and filtration) by high performance size-exclusion chromatography (HPSEC). Starches were dispersed in 90% DMSO and heated for 10 min at temperatures of 35–120ºC. At low temperatures, high coefficients of variation resulted from additional DMSO solubilization after treatment. At 120ºC, 70% amylose starch was >90% solubilized, while waxy starch was only 47% solubilized. When starches were treated for 18–89 h in 90ºC DMSO, solubility stopped increasing after 67 h. High amylose starch (70%) was mostly solubilized, but 53% amylose, waxy and regular starches could only be fully solubilized after exposure to shear. Amylopectin molecules appeared more susceptible to shear induced depolymerization than amylose. The percent amylopectin in the high amylose starches reflected that as determined by iodine binding analysis and the manufacturer; while the percent amylopectin in regular starch was too low (manufacturers: 75%, HPSEC: 65%). Undispersed components were mostly amylopectin. Since amylose is fully solubilized, however, the HPSEC can be used to quickly determine percent amylose in starch.  相似文献   

6.
Hardness and the percentage of leaked water of sweetpotato starch gels after storage were investigated as indexes of starch retrogradation. Starches of some varieties of sweetpotato were retrograded rapidly, but those of others were not retrograded during storage for one week. After one month of storage, starches of all varieties were highly retrograded, but the varietal order of hardness and the percentage of leaked water were almost the same as that after storage for one week. The study of chain length distribution by gel permeation chromatography after debranching by isoamylase showed that the hardness and the percentage of leaked water from the gel were positively correlated with amylose content and the proportion of Fr 1, the fraction of the highest molecular weight, containing amylose and extremely long chains of amylopectin, and negatively correlated with the proportion of Fr 3, the fraction with the lowest molecular weight, containing shorter chains of amylopectin. In addition, it was demonstrated by high performance anion exchange chromatography that the proportion of extra‐short chains (around DP 10) of amylopectin after isoamylase treatment was negatively correlated with the retrogradation index of starch. These results suggest that retrogradation of sweetpotato starch was promoted by amylose and extremely long chains of amylopectin and was inhibited by extra‐short chains (around DP 10) of amylopectin.  相似文献   

7.
The structures and physicochemical properties of acid‐thinned corn, potato, and rice starches were investigated. Corn, potato, and rice starches were hydrolyzed with 0.14 N hydrochloric acid at 50 °C until reaching a target pasting peak of 200—300 Brabender Units (BU) at 10% solids in the Brabender Visco Amylograph. After acid modification the amylose content decreased slightly and all starches retained their native crystallinity pattern. Acid primarily attacked the amorphous regions within the starch granule and both amylose and amylopectin were hydrolyzed simultaneously by acid. Acid modification decreased the longer chain fraction and increased the shorter chain fraction of corn and rice starches but increased the longer chain fraction and decreased the shorter chain fraction of potato starch, as measured by high‐performance size‐exclusion chromatography. Acid‐thinned potato starches produced much firmer gels than did acid‐thinned corn and rice starches, possibly due to potato starch's relatively higher percentage of long branch chains (degree of polymerization 13—24) in amylopectin. The short‐term development of gel structure by acid‐thinned starches was dependent on amylose content, whereas the long‐term gel strength appeared dependend on the long branch chains in amylopectin.  相似文献   

8.
将蜡制玉米淀粉、酯化蜡制玉米淀粉和交联酯化蜡制玉米淀粉以添加量分别为0%、2%、4%、6%、8%、10%添加到肌原纤维蛋白中,形成蛋白淀粉复合物,研究3?种淀粉对肌原纤维蛋白凝胶保水性、质构特性、白度值、表面疏水性、流变特性和微观结构的影响。结果表明,相比纯肌原纤维蛋白,淀粉均能显著提高复合凝胶的保水性、硬度和弹性(P<0.05),且随添加量的增加而显著增加(P<0.05),但在添加量为10%时,各指标上升不显著(P>0.05),其中交联酯化蜡制玉米淀粉效果最好;3?种淀粉均能增加复合凝胶的白度值,但交联酯化蜡制玉米淀粉的添加会使复合凝胶的白度值过大(P<0.05),对色泽不利;同时,淀粉能显著提高复合蛋白的表面疏水性和凝胶的弹性模量(P<0.05),且随着添加量的增加而显著增加(P<0.05),与肌原纤维蛋白凝胶相比,复合凝胶结构趋于致密均匀。在实验的3?种淀粉中,除色泽因素外,交联酯化蜡制玉米淀粉提高凝胶性能的效果要优于其他两种淀粉。?  相似文献   

9.
Amylomaltase (AM) (4-α-d-glucanotransferase; E.C. 2.4.1.25) from Thermus thermophilus was used to modify starches from various botanical sources including potato, high amylose potato (HAP), maize, waxy maize, wheat and pea, as well as a chemical oxidized potato starch (Gelamyl 120). Amylopectin chain length distribution, textural properties of gels and molecular weight of 51 enzyme and 7 non-enzyme-modified starches (parent samples) were analyzed. Textural data were compared with the textural properties of gelatin gels. Modifying starch with AM caused broadening of the amylopectin chain length distribution, creating a unimodal distribution. The increase in longer chains was supposedly a combined effect of amylose to amylopectin chain transfer and transfer of cluster units within the amylopectin molecules.Exploratory principal component analysis (PCA) data analysis revealed that the data were composed of two components explaining 94.2% of the total variation. Parent starches formed a cluster separated from that of the AM-modified starches.Extended AM treatments reduced the apparent molecular weight and the gel texture without changing the amylopectin chain length distribution. However, the gel texture was typically increased as compared to the parent starch. AM-modified HAP gels were about twice as hard as gelatin gels at identical concentration, whereas gels of pea starch were comparable to gelatin gels. Modifying Gelamyl 120 and waxy maize with AM did not change the textural properties. Branching enzyme (BE) (1,4-α-d-glucan branching enzyme; EC 2.4.1.18) from Rhodothermus obamensis was used in just one modification and in combination with AM. The combined AM/BE modification of pea starch resulted in starches with shorter amylopectin chains and pastes unable to form gel network even at concentration as high as 12.0% (w/w). The PCA model of all gel texture data gave suggestive evidence for starch structural features being important for generating a gelatin-like texture.  相似文献   

10.
Gelatinization and solubility characteristics of starch contribute to unique functionality in foods. Corn and oat starch viscoamylographs (35g db) showed peak viscosities of 400 and 390B.U., respectively. Oat starch had a more rapid (89.7 vs 85.6°C) and higher set back (790 vs. 740B.U.) than corn. Data on soluble components of cooled (85°C) starch pastes, as collected and analyzed by high-performance size exclusion chromatography (HPSEC), suggest that amylopectin plays a significant (P<0.05) role in oat paste set back; for corn starch, amylose is the dominant factor. Solubilities and apparent molecular weights (MW) of oat starch heated (65-120°C) under shear and subsequent sonication (0-40s) in water or 90% methyl sulfoxide (DMSO) were also determined by HPSEC. An intermediate MW fraction was eluted on the HPSEC chromatograms only when oat starch was heated in water (100-120°C/30min) or DMSO and sonicated, suggesting that this fraction may not be inherent in the native granule. in water, polymer solubility and peak MW increased with temperature (65-120°C), whereas in DMSO, solubility decreased with heating (65-100°C), while peak MW remained basically constant. Aqueous (aq) leaching at 75°C solubilized more corn amylose than amylopectin, but amylopectin and amylose co-leached from oat starch granules. Aq leaching, at 20°C above their DSC peak ends (85 and 95°C for oat and corn, resepctively), showed more amylopectin leached from oat starch granules whereas more amylose was leached from corn starch granules.  相似文献   

11.
Native corn starch, plasticized with water, glycerol and stearic acid, was extruded in a conical twin‐screw extruder and sheeted into 0.4–0.6 mm thick films. The effects of extrusion and plasticizers on gelatinization, as well as the molecular and structural changes, in thermoplastic starch were analyzed. The onset and peak gelatinization temperatures of extruded starch varied from 42–46°C and 52.9–56.9°C, respectively, depending on the glycerol content. The enthalpy of gelatinization of extruded thermoplastic starch in excess water varied from 3.6–7.6 J/g, which also increased with plasticizer content. Amylose‐lipid complexes were formed during extrusion, and their enthalpies depended on the initial stearic acid and moisture contents. High‐performance size‐exclusion chromatography (HPSEC) data revealed that the starch underwent fragmentation during extrusion even under highly plasticized conditions, but the degradation was not severe as compared to previous findings. The relative percentages of amylopectin and amylose in native starch were 76.9 and 23.1%, respectively, which were changed to 71.3–76.6% and 23.4–28.7% in the extrudates. The average molecular weights of amylopectin and amylose in the extrudates ranged from 1.55×107–2.07×107 and 4.35×105–7.39×105, respectively. On the other hand, the molecular weights of amylopectin and amylose in native corn starch were observed as 2.27×107 and 4.68×105, respectively. Cross‐polarization magical angle spinning (CP/MAS) and high‐power decoupling (HP‐DEC) nuclear magnetic resonance (NMR) spectra of thermoplastic starch revealed the characteristics of amylomaize starch, confirming HPSEC results that the amylopectin macromolecules underwent fragmentation into amylose‐like fractions. In the extrudates, glycerol was found to be less mobile and entrained within the starch network.  相似文献   

12.
目的 研究6种不同种类直支链淀粉相互混合对其回生的影响。方法 将玉米淀粉、甘薯淀粉、木薯淀粉、马铃薯淀粉、糯米淀粉、小麦淀粉等6种不同种类直支链淀粉分离出来, 然后两两混合, 研究不同直支链混合对其回生率的影响。 结果 马铃薯支链淀粉与甘薯支链淀粉以2:8(m:m)混合回生率最低, 为60.0%, 玉米支链淀粉与木薯支链淀粉以8:2(m:m)混合回生率最低为52.6%, 小麦支链淀粉与糯米支链淀粉以8:2(m:m)混合回生率最低为51.2%, 甘薯支链淀粉与小麦支链淀粉以1:1(m:m)混合回生率最低为53.7%。木薯支链淀粉与小麦直链淀粉以1:1(m:m)混合时所得淀粉回生率最大, 达到了92.0%, 混合淀粉回生后X射线晶型为B型。结论 不同种类直支链淀粉混合对其回生率影响很大, 食品加工中尽量不要混合使用木薯支链淀粉与小麦直链淀粉。  相似文献   

13.
The effect of enzyme treatments (granular starch hydrolyzing and conventional enzymes) and different amylose: amylopectin ratios of maize starch on ethanol production was evaluated. For starch treatments, amylose: amylopectin ratios were prepared by mixing commercially available Hylon VII (70% amylose and 30% amylopectin) and Amioca (˜100% amylopectin) starches. For maize treatments, waxy, high amylose and regular dent hybrids were used to represent varying amylose: amylopectin ratios. All hydrolyses followed by fermentations were conducted at 15% solids content. Differences were observed in ethanol yields among granular starch hydrolyzing and conventional enzymes. Differences also were observed in ethanol yields between different amylose: amylopectin ratios for pure starch and maize samples. For starch samples, final ethanol concentrations varied from 2.2 to 9.1% (v/v) for fermentation with granular starch hydrolyzing enzyme and from 6.7 to 9.3% (v/v) for conventional enzymes. Higher ethanol concentrations were observed for Amioca starch for both enzymes. For maize samples, final ethanol concentrations were highest for waxy maize for both granular starch hydrolyzing (8.2%, v/v) and conventional (8.2%, v/v) enzymes. Lowest ethanol concentrations were observed for high‐amylose maize samples for granular starch hydrolyzing (6.3%, v/v) and conventional (5.2%, v/v) enzymes.  相似文献   

14.
The relationships between wheat starch content and wheat malt qualities were studied in the present work. Six wheat varieties that were typical in starch, protein content and amylopectin/amylose ratio were selected from 12 wheat varieties and germinated under the same conditions. The decreased degree of total starch content after malting had a positive correlation (r = 0.8020, P < 0.1) with the amylopectin/amylose ratio of the raw wheat. Extracts of wheat malts were influenced by starch content and the amylopectin/amylose ratio of the raw wheat. When the amylopectin/amylose ratio was in the range 3.65:1?3.93:1, extracts of the malts had significant positive correlation (r = 0.967, P = 0.002) with the starch content of the raw wheat. In this investigation a suitable amylopectin/amylose ratio (3.65:1 to 3.93:1), a high starch content and a low protein content were the characteristics of a wheat variety suitable for malting.  相似文献   

15.
Chitin and collagen powders were added as fillers to various starches (potato, sweet potato, kudzu, corn, wheat, and mung bean), heated at 100C for 10 min with stirring to make a hot paste and allowed to gel quiescently at 5C for 2 h in order to investigate the effects of the filler particle on the texture of the gels. The parameters of hardness, cohesiveness and adhesiveness were determined instrumentally and compared. The filler particles of collagen and chitin were effective in increasing hardness of corn starch gels but had no effects on hardness of the potato, sweet potato, kudzu, wheat and mung bean starch gels except at the lower starch concentrations. Cohesiveness was increased slightly in all starch gels by addition of collagen whereas chitin addition only increased the cohesiveness of sweet potato and mung bean starch gels. Collagen and chitin addition increased adhesiveness all of starch gels, but the intensity of the effect was most remarkable for collagen. The observed differences in effects was apparently due to differences in the interactions between starches and filler particles arising from differences in the surface properties of the filler particles.  相似文献   

16.
Aqueous suspensions (30%) of waxy corn and potato starches were illuminated for 5–50 h with linearly polarised visible light (λ > 500 nm). Molecular weights (M?w) and radii of gyration (R?g) of the amylopectin and amylose fractions of illuminated waxy corn starch, and the amylopectin, intermediate, and amylose fractions of illuminated potato starch were measured by high‐performance size exclusion chromatography coupled with multiangle laser light scattering and refractive index detection. The weight‐average molecular weight (M?w) and radius of gyration (R?g) of the amylopectin fraction of native waxy corn starch were 14.45 × 107 and 161.1 nm respectively. After 15 h of illumination a decrease in M?w (5.80 × 107) and R?g (117.6 nm) was observed. Illumination for 25 h, led to an increase in M?w (7.60 × 107) and R?g (134.0 nm). Further illumination, up to 50 h resulted in a slight decrease in M?w (6.74 × 107). The molecular weight and radius of gyration of the amylopectin fraction of native potato starch were 21.30 × 107 and 207 nm respectively. Illumination for 15 h led to a decrease in M?w (14.87 × 107) and R?g (141.5 nm), followed by an increase in both values after 25 h (18.97 × 107, 146.6 nm) and 50 h (19.69 × 107, 207.1 nm) of illumination. Illumination influenced the swelling power, solubility, susceptibility to α‐amylolysis and X‐ray diffractogram of the starches. A varying increase in the solubility passed through a minimum after 25 h of illumination. The X‐ray diffraction pattern and susceptibility to enzymatic hydrolysis of waxy corn starch did not change, but in potato starch a gradual, illumination time‐dependent increase in the amylolysis rate took place. This effect could result from the reduction in crystallinity of the starch as indicated by the X‐ray diffraction pattern. Copyright © 2003 Society of Chemical Industry  相似文献   

17.
The influence of amylose and amylopectin on structural reorganization occurred during annealing was studied for normal and waxy corn starches. Annealing caused an increase in crystallinity in the waxy corn starch, whereas the number of pores on the granule surface, observed by SEM, increased especially for normal corn starch. Amylose and amylopectin chains of the annealed normal corn starch were degraded to greater extension during enzymatic hydrolysis than those of the native starch. On contrary, the annealing caused a protective effect on waxy corn starch amylopectin toward the enzymatic reaction suggesting that this treatment promoted a better interaction between amylopectin chains of waxy corn starch. The amylose molecules of normal corn starch may have impaired the mobility of amylopectin molecules and restricted the reorganization of the crystalline structure during the annealing. The major increase in pores number on the granule surface of annealed normal corn starch, resulted of the endogenous amylase action during annealing, could facilitate the exogenous enzymes’ role in the degradation of the starch granules’ amorphous area.  相似文献   

18.
The objective of this study was to evaluate the effects of starch source and amylose content on the expansion ratio, density, and texture of expanded extrudates, as well as to investigate the structural and molecular changes that occur in starch granules as a function of extrusion. The starches employed were rice starches (8%, 20%, and 32% amylose), carioca bean starch (35% amylose), and Hylon V® corn starch (55% amylose). The extrudates from rice starches containing 20% and 32% amylose exhibited the highest expansion ratio, while, extrudates from Hylon V® corn starch containing 55% amylose exhibited the lowest expansion ratio. The hardness values of the extrudates with 55% amylose were twice those of the extrudates with 20%, 32%, and 35% amylose. An additional finding was that although the amylopectin promoted the expansion of the gelatinized starch matrix, it failed to strengthen and sustain the walls of the extrudate bubbles during expansion.  相似文献   

19.
Effect of Starch of Textural Properties of Surimi Gel   总被引:1,自引:0,他引:1  
The proportion of amylose and amylopectin, and the rheological behavior of eight starches were correlated with the textural properties of starch-containing surimi gels. Findings included the following: increased firmness and cohesiveness with increases in water-holding ability and viscosity of the starch; increased expressible moisture and penetration force with an increase in the amylose fraction due to increased retrogradation: increased tensile force with an increase in the amylopectin fraction: and increased cohesiveness and chewiness after refrigerated storage for all starches with a greater increase for high amylose starches. Surimi gels containing potato starch were the firmest and most cohesive. The textural properties of starch-containing surimi gel correlated well (r = 0.90 to 0.97, P>0.05) with the viscosity of starch paste if 100% amylopectin-containing and pregelatinized starches were excluded from the correlation.  相似文献   

20.
The action of amylose within the granule of normal corn starch is investigated by changes in pasting characteristics of waxy corn starch in a Rapid Visco Analyzer (RVA), using addition of soluble amylose (DP = 18) and cross-linking with epichlorohydrin. Although waxy corn starch, containing no amylose, did not show an effect of addition of amylose on pasting characteristics, by cross-linking with epichlorohydrin, the pasting peak viscosity and breakdown were greatly enhanced and set-back (viscosity increased in the cooling process after gelatinization) was generated. The cross-linking depressed the disintegration of starch granules in the swelling process, with amylose interaction, resulting in RVA pasting characteristics similar to those seen with normal corn starch containing amylose. Set-back was essentially caused by rearrangement among modified amylopectins. Addition of sodium dodecyl sulfate (SDS) to the RVA more efficiently enhanced the effect. This indicated that amylose in normal corn starch interacts with amylopectin through locally strong linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号