首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Apigenin (4′,5,7‐trihydroxyflavone, 5,7‐dihydroxy‐2‐(4‐hydroxyphenyl)‐4H‐1‐benzopyran‐4‐one) is a flavonoid found in many fruits, vegetables, and herbs, the most abundant sources being the leafy herb parsley and dried flowers of chamomile. Present in dietary sources as a glycoside, it is cleaved in the gastrointestinal lumen to be absorbed and distributed as apigenin itself. For this reason, the epithelium of the gastrointestinal tract is exposed to higher concentrations of apigenin than tissues at other locations. This would also be true for epithelial cancers of the gastrointestinal tract. We consider the evidence for actions of apigenin that might hinder the ability of gastrointestinal cancers to progress and spread. Apigenin has been shown to inhibit cell growth, sensitize cancer cells to elimination by apoptosis, and hinder the development of blood vessels to serve the growing tumor. It also has actions that alter the relationship of the cancer cells with their microenvironment. Apigenin is able to reduce cancer cell glucose uptake, inhibit remodeling of the extracellular matrix, inhibit cell adhesion molecules that participate in cancer progression, and oppose chemokine signaling pathways that direct the course of metastasis into other locations. As such, apigenin may provide some additional benefit beyond existing drugs in slowing the emergence of metastatic disease.  相似文献   

2.
芹菜素属于黄酮类化合物,广泛存在于多种蔬菜、水果、豆类和茶叶中。芹菜素能够透过血脑屏障发挥神经保护作用,改善神经系统疾病。本文主要从抗氧化、抗炎两方面阐述和探讨芹菜素神经保护作用机制及其在各种神经系统疾病中的改善作用,为芹菜素在此类疾病中的潜在应用提供新的思路和依据。  相似文献   

3.
目的:研究芹菜素(apigenin,AP)对3T3-L1 前脂肪细胞增殖及分化的影响。方法:采用3T3-L1 前脂肪细胞,利用MTT 比色分析法检测不同质量浓度芹菜素对3T3-L1 前脂肪细胞增殖的影响;采用传统的鸡尾酒诱导剂诱导分化3T3-L1 前脂肪细胞,利用油红O 染色检测,通过比色分析法检测不同质量浓度芹菜素对3T3-L1 前脂肪细胞分化的影响。结果:30、50μg/mL 芹菜素相对于空白组和阳性对照组能够显著抑制3T3-L1 前脂肪细胞增殖和分化,提示其可能具有预防肥胖的作用。  相似文献   

4.
Flavones isolated from celery varied in their stability and susceptibility to deglycosylation during thermal processing at pH 3, 5, or 7. Apigenin 7-O-apiosylglucoside was converted to apigenin 7-O-glucoside when heated at pH 3 and 100 °C. Apigenin 7-O-glucoside showed little conversion or degradation at any pH after 5 h at 100 °C. Apigenin, luteolin, and chrysoeriol were most stable at pH 3 but progressively degraded at pH 5 or 7. Chamomile and celery were used to test the effects of glycosidase-rich foods and thermal processing on the stability of flavone glycosides. Apigenin 7-O-glucoside in chamomile extract was readily converted to apigenin aglycone after combination with almond, flax seed, or chickpea flour. Apigenin 7-O-apiosylglucoside in celery leaves was resistant to conversion by β-glucosidase-rich ingredients, but was converted to apigenin 7-O-glucoside at pH 2.7 when processed at 100 °C for 90 min and could then be further deglycosylated when mixed with almond or flax seed. Thus, combinations of acid hydrolysis and glycosidase enzymes in almond and flax seed were most effective for developing a flavone-rich, high aglycone food ingredient from celery.  相似文献   

5.
Soluble phenolics in leaf blades and sheaths from the crop residues of 24 sorghum varieties were studied. Apigenin, luteolin, apigenin and luteolin 7-O-glucosides, p-coumaric acid, butin and apigeninidin were identified. This is the first report of butin in sorghum tissues. Derivatives of the following compounds were also detected but not characterised further: apigeninidin, luteolinidin, chalcone, flavanone and/or dihydroflavonol, cinnamic acid, apigenin and luteolin. The composition of phenolics was clearly different between leaf blades (LB) and sheaths (LS), and also between leaf sheaths of bird-resistant (BR) and non-bird-resistant (NBR) varieties. Routes of flavonoid biosynthesis in BR and NBR varieties appear to diverge at the flavanone/dihydroflavonol level. Several negative correlations were found between HPLC peaks and in-vitro digestibilities, ie true dry matter and neutral-detergent fibre digestibility. These were highly significant with butin and significant with several luteolin derivatives but only with one apigenin derivative. Butin in turn was highly negatively correlated with colorimetric measurements of 3-desoxyanthocyanidins. This may suggest that butin—rather than the 3-desoxyanthocyanidins as previously reported—is implicated in reducing dry matter digestibility. Selecting varieties low in luteolin derivatives and butin and rich in apigenin should enhance the digestibilities of sorghum crop residues.  相似文献   

6.
An HPLC method for the determination of flavone C-glycosides (FCG) from black tea has been developed. Sample clean-up was accomplished by means of polyamide column chromatography, followed by enzyme hydrolysis of interfering compounds such was flavonol glycosides and a second polyamide column Chromatographic step. Using HPLC with gradient elution and photodiode array detection eight FCG were separated. Seven FCG were isolated by means of preparative HPLC. Identification was carried out using co-chromatography, FAB(Fast Atom Bombardment)-mass spectrometry and various nuclear magnetic resonance techniques. Apigenin 6-C-glucosyl-8-arabinoside (schaftoside) and apigenin 6-C-arabinosyl-8-C-glucoside (isoschafto-side) as well as luteolin 8-C-glucoside (orientin) and luteolin 6-C-glucoside (isoorientin) have been detected in tea for the first time. Three of the other compounds have been identified as apigenin 8-C-glucoside (vitexin), apigenin 6-C-glucoside (isovitexin) and apigenin 6,8-di-C-glucoside (vicenin-2). Their occurrence in tea has been previously reported. From its UV spectrum another compound was concluded to be an apigenin glycoside. The FCG were quantified in a variety of teas of different origins (16 black, two green and one oolong). The total amounts of the FCG were 0.48–2.69 g/kg dry weight. The FCG pattern of teas of different origins were similar to each other and no origin-dependent characteristics have yet been observed. Small amounts of FCG (1.2–2.2 mg/g) were detected in hydrolysates of high relative molecular mass fractions (Mr>5000) of a black tea liquor.  相似文献   

7.
Abstract

Folic acid (FA) is often consumed as a food supplement and can be found in fortified staple foods in various western countries. Even though FA supplementation during pregnancy is known to prevent severe congenital anomalies in the developing child (e.g., neural tube defects), much less is known about its influence on cognition and neurological functioning. In this review, we address the advances in this field and situate how folate intake during pregnancy, postnatal life, adulthood and in the elderly affects cognition. In addition, an association between folate status and ageing, dementia and other neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis is discussed. While its role in the incidence and severity of these diseases is becoming apparent, the underlying action of folates and related metabolites remains elusive. Finally, the potential of FA as a nutraceutical has been proposed, although the efficacy will highly depend on the interplay with other micronutrients, the disease stage and the duration of supplementation. Hence, the lack of consistent data urges for more animal studies and (pre)clinical trials in humans to ascertain a potential beneficial role for folates in the treatment or amelioration of cognitive decline and ageing-related disorders.  相似文献   

8.
9.
The study compared high-pressure, microwave, ultrasonic, and traditional extraction techniques. The following extraction conditions were implemented: microwave-assisted extraction (MAE) at 900 W power for durations of 30, 60, and 90 s; ultrasonic-assisted extraction (UAE) at 100% amplitude for periods of 5, 10, and 15 min; and high-pressure processing (HPP) at pressures of 400 and 500 MPa for durations of 1, 5, and 10 min. The highest yield in terms of total phenolic content (PC) was obtained in UAE with a value of 45.13 ± 1.09 mg gallic acid equivalent (GAE)/100 g fresh weight (FW). The highest PC content was determined using HPP-500 MPa for 10 min, resulting in 40 mg GAE/100 g, and MAE for 90 s, yielding 34.40 mg GAE/100 g FW. The highest value of antioxidant activity (AA) was obtained by UAE in 51.9% ± 0.71%. The PCs were identified through the utilization of Fourier transform infrared (FTIR) spectroscopy and high-performance liquid chromatography (HPLC). Utilizing multivariate analysis, the construction of chemometric models were executed to predict AA or total PC of the extracts, leveraging the information from IR spectra. The FTIR spectrum revealed bands associated with apigenin, and the application of HPP resulted in concentrations of 5.41 ± 0.25 mg/100 g FW for apigenin and 1.30 ± 0.15 mg/100 g FW for protocatechuic acid. Furthermore, HPLC analysis detected the presence of protocatechuic acid, caffeic acid, p-coumaric acid, and apigenin in both green extraction methods and the classical method. Apigenin emerged as the predominant phenolic compound in peach extracts. The highest concentrations of apigenin, p-coumaric acid, and protocatechuic acid were observed under HPP treatment, measuring 5.41 ± 0.25, 0.21 ± 0.04, and 1.30 ± 0.15 mg/kg FW, respectively.  相似文献   

10.
Metabolic syndrome is a disorder which encompasses obesity, high blood glucose, high cholesterol levels and high blood pressure. Moreover, metabolic syndrome is considered as the most important risk factor for cardiovascular disease (CVD). CVD is the leading cause of mortality in the world for both men and women. Several chemical drugs are available to treat metabolic risk factors, but because of the safety, efficacy, cultural acceptability and lesser side effects, nowadays herbal therapy has a critical role in the treatment of these CVD risk factors. Crocus sativus L. (saffron) is a perennial herb that belongs to the Iridaceae family. Saffron is an extensively used food additive for its colour and taste and has been widely used in traditional as well as modern medicine to treat several illnesses including cardiovascular diseases. Most of the unique properties of this plant are attributed to the presence of three major components, including crocin, safranal and crocetin. It has been proved that saffron has an important role in the management of metabolic syndrome because of its marvelous activities including anti‐diabetic, anti‐obesity, hypotensive and hypolipidaemic properties. In this review article, we discuss the beneficial properties of saffron and its active components to treat different components of metabolic syndrome and most relevant animal and human studies regarding the use of this plant in cardiovascular disease, with focus on the metabolic risk factors. This review also suggests that after randomised clinical trials, saffron may be implicated as a preventive or therapeutic agent against metabolic syndrome. © 2016 Society of Chemical Industry  相似文献   

11.
Abstract

Curcumin is the principal curcuminoid found in turmeric (Curcuma longa), a spice frequently used in Asian countries. Given its anti-inflammatory and antioxidant properties, it has been hypothesized that curcumin might be effective in treating symptoms of a variety of neuropsychiatric disorders, such as depression. We conducted a systematic review following the PRISMA guidelines. In August 2019, we screened 930 articles, of which 9 were eligible for the meta-analysis. In 7 articles, participants were affected by major depressive disorder (MDD), while in other two they suffered from depression secondary to a medical condition. We found an overall significant effect of curcumin on depressive (10 studies, 531 participants, Hedge’s g?=??0.75, 95% CI ?1.11 to ?0.39, p?<?0.001) and anxiety symptoms (5 studies, 284 participants, Hedge’s g = ?2.62, 95% CI ?4.06 to ?1.17, p?<?0.001), with large effect size. Curcumin was generally well-tolerated by patients. Our findings suggest that curcumin, if added to standard care, might improve depressive and anxiety symptoms in people with depression. However, given the small sample size, our results should be cautiously interpreted. Further trials should be implemented, particularly in Western countries, where curcumin does not represent a usual component of dietary regimens.  相似文献   

12.
13.
Over the past two decades, studies have documented the wide-range anti-cancer effects of Nigella sativa, known as black seed or black cumin. Thymoquinone (TQ), its major active ingredient, has also been extensively studied and reported to possess potent anti-cancer properties. Herein, we provide a comprehensive review of the findings related to the anti-cancer activity of TQ. The review focuses on analyzing experimental studies performed using different in vitro and in vivo models to identify the anti-proliferative, pro-apoptotic, anti-oxidant, cytotoxic, anti-metastatic, and NK-dependent cytotoxic effects exerted by TQ. In addition, we pinpoint the molecular mechanisms underlying these effects and the signal transduction pathways implicated by TQ. Our analysis show that p53, NF-κB, PPARγ, STAT3, MAPK, and PI3K/AKT signaling pathways are among the most significant pathways through which TQ mediates its anti-cancer activity. Experimental findings and recent advances in the field highlight TQ as an effective therapeutic agent for the suppression of tumor development, growth and metastasis for a wide range of tumors.  相似文献   

14.
The term ‘metabolic profile’ refers to the analysis of blood biochemical parameters that are useful to assess and prevent metabolic and nutritional disorders in dairy herds. In the higher standards of milk production, the priority in modern breeding is keeping dairy cows in high lactation and healthy. The proper analysis, as well as control. of their feeding and metabolic status is immensely important for the health condition of the herd. The disproportion between the genetically determined ability for milk production and the limitations in improving the energy value of the ration may be the cause of metabolic disorders. Negative energy balance has a major impact on the body's hormonal balance and organ functions and mostly appears during transition periods: from 3 to 2 weeks prepartum until 2–3 weeks postpartum. The term ‘transition’ is used to underscore the important physiological, metabolic and nutritional changes occurring in this time. The manner in which these changes occur and how they are diagnosed and detected are extremely important, as they are closely related to clinical and subclinical postpartum diseases, lactation and reproductive performance – factors that significantly shape the profitability of production. Therefore the priority for intensive milk production is prevention of metabolic diseases and other disorders. It is the intent of this review to synthesize and summarize the information currently available on metabolic status and physiological changes in the cow's body that occur during lactation, as well as to discuss the interpretation of the results, which will be a useful diagnostic tool in nutritional evaluations of the dairy herd. © 2016 Society of Chemical Industry  相似文献   

15.
Diabetes has emerged as a major threat to worldwide health. The exact mechanisms underlying the disease are unknown; however, there is growing evidence that the excess generation of reactive oxygen species (ROS) associated with hyperglycemia, causes oxidative stress in a variety of tissues. In this context, various natural compounds with pleiotropic actions like α‐lipoic acid (LA) are of interest, especially in metabolic diseases such as diabetes. LA, either as a dietary supplement or a therapeutic agent, modulates redox potential because of its ability to match the redox status between different subcellular compartments as well as extracellularly. Both the oxidized (disulfide) and reduced (di‐thiol: dihydro‐lipoic acid, DHLA) forms of LA show antioxidant properties. LA exerts antioxidant effects in biological systems through ROS quenching but also via an action on transition metal chelation. Dietary supplementation with LA has been successfully employed in a variety of in vivo models of disease associated with an imbalance of redox status: diabetes and cardiovascular diseases. The complex and intimate association between increased oxidative stress and increased inflammation in related disorders such as diabetes, makes it difficult to establish the temporal sequence of the relationship.  相似文献   

16.
人体肠道内菌群数量巨大且种类丰富,参与机体的多项生理过程,研究显示肠道菌群能够通过肠道菌群-肠-脑轴来调节机体大脑的发育与行为。益生菌是一类对人体有益的活性微生物,可以通过调节人体肠道微生态平衡从而对人体产生有益作用。临床医学研究表明,益生菌对自闭症谱系障碍、阿尔茨海默病、帕金森病、抑郁症和多发性硬化等神经系统疾病具有良好的防治作用。本文总结了近几年来国内外关于益生菌对神经系统疾病作用机制的研究进展,以期为益生菌对此类疾病的干预治疗提供新思路。  相似文献   

17.
Abstract

Coffee is reported to be among the most widely consumed beverages in the world and coffee consumption has been associated with reductions in the risk of several chronic diseases. Among its constituents, caffeine represents the most investigated component. The main impact of caffeine on health is associated with the central nervous system, the cardiovascular system, the inflammatory mechanisms, the metabolism of carbohydrates, and the cancer. Current research is devoted to the role of this compound and its analogs or derivatives on neuroinflammation and neurodegenerative disorders, mainly Alzheimer’s Disease and Parkinson’s Disease. However, coffee is also rich in polyphenols, mainly phenolic acids (chlorogenic acids, caffeic acid, ferulic acid), quinic acid, and quercetin. Many aspects still require greater clarification, including the effect of coffee compounds different from caffeine, on several pathologies. This review aimed to provide a comprehensive overview of the potential benefits of decaffeinated coffee constituents, focusing the attention on neurological processes and pathologies, such as mainly memories disorders, Parkinson’s Disease, neurophatic pain disorders, and cerebral ischemia.  相似文献   

18.
Mints (Mentha species) are widely used as food, medicine, spice, and flavoring agents. At the present work, phenolics profile of infusion and ethanol extract of Mentha longifolia was determined using an RP–HPLC–DAD system. Total bioactive contents, radical scavenging, reducing power, metal chelating, and enzyme inhibitory activities relevant to Alzheimer’s disease, diabetes mellitus, and skin disorders were evaluated. Sixteen phenolic compounds (ten phenolic acids and six flavonoids) were identified in the extracts in which sinapic acid (7132 µg/g extract) and rosmarinic acid (6260 µg/g extract) were the most abundant compounds. Strong antioxidant effects were observed in 1,1-diphenyl-2-picrylhydrazyl radical, 2,2?-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), cupric ion reducing activity, ferric reducing antioxidant power, phosphomolybdenum, and metal chelating assays. Results indicated selective acetylcholinesterase inhibitory activity and high α-amylase and α-glucosidase inhibitory potential. Findings showed that M. longifolia has promising health benefits due to its high concentration of useful phenolic compounds and has great potential for possible applications in the preparation of functional ingredients.  相似文献   

19.
Tea polyphenols (TP) are the main components in tea. Studies in vitro have shown they have significant biological activity; however, the results are inconsistent with experiments in vivo. For the low bioavailability, most TP are thought to remain in the gut and metabolized by intestinal bacteria. In the gut, the unabsorbed TP are metabolized to a variety of derivative products by intestinal flora, which may accumulate to exert beneficial effects. Numerous studies have shown that TP can inhibit obesity and its related metabolism disorders effectively. Meanwhile, it has demonstrated that TP and their derivatives may modulate intestinal micro-ecology. The understanding of the interaction between TP and intestinal microbiota will allow us to better evaluate the contribution of microbial metabolites of TP to anti-obesity activity. This review showed implications for the use of TP as functional food with potential therapeutic utility against obesity by modulating intestinal microbiota, contributing to the improvement of human health. © 2019 Society of Chemical Industry  相似文献   

20.
Helicobacter pylori is the main pathogen that induces chronic gastritis, peptic ulcers, atrophic gastritis, and other gastric disorders, and it is classified as a group I carcinogen. To eradicate H. pylori infection, triple therapy consisting of two antibiotics and a proton pump inhibitor is the most widely recommended first‐line therapeutic strategy. Antimicrobial resistance to antibiotics contained in triple therapy could lead to therapeutic regimen failures. Recent studies showed that many natural products, including fruits, vegetables, spices, and medicinal plants, possess inhibitory effects on H. pylori, indicating their potential to be alternatives to prevent and manage H. pylori infection. This review summarizes the effects of natural products on H. pylori infection and highlights the mechanisms of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号