首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ahmed W  Tucker J  Harper J  Neller R  Katouli M 《Water research》2006,40(12):2339-2348
A comparison of the efficacy of an existing large metabolic fingerprint database of enterococci and Escherichia coli with a locally developed database was undertaken to identify the sources of faecal contamination in a coastal lake, in southeast Qld., Australia. The local database comprised of 776 enterococci and 780 E. coli isolates from six host groups. In all, 189 enterococci and 245 E. coli biochemical phenotypes (BPTs) were found, of which 118 and 137 BPTs were unique (UQ) to host groups. The existing database comprised of 295 enterococci UQ-BPTs and 273 E. coli UQ-BPTs from 10 host groups. The representativeness and the stability of the existing database were assessed by comparing with isolates that were external to the database. In all, 197 enterococci BPTs and 179 E. coli BPTs were found in water samples. The existing database was able to identify 62.4% of enterococci BPTs and 64.8% of E. coli BPTs as human and animal sources. The results indicated that a representative database developed from a catchment can be used to predict the sources of faecal contamination in another catchment with similar landuse features within the same geographical area. However, the representativeness and the stability of the database should be evaluated prior to its application in such investigation.  相似文献   

2.
The microbiological quality of coastal or river waters can be affected by faecal pollution from human or animal sources. An efficient MST (Microbial Source Tracking) toolbox consisting of several host-specific markers would therefore be valuable for identifying the origin of the faecal pollution in the environment and thus for effective resource management and remediation. In this multidisciplinary study, after having tested some MST markers on faecal samples, we compared a selection of 17 parameters corresponding to chemical (steroid ratios, caffeine, and synthetic compounds), bacterial (host-specific Bacteroidales, Lactobacillus amylovorus and Bifidobacterium adolescentis) and viral (genotypes I-IV of F-specific bacteriophages, FRNAPH) markers on environmental water samples (n = 33; wastewater, runoff and river waters) with variable Escherichia coli concentrations. Eleven microbial and chemical parameters were finally chosen for our MST toolbox, based on their specificity for particular pollution sources represented by our samples and their detection in river waters impacted by human or animal pollution; these were: the human-specific chemical compounds caffeine, TCEP (tri(2-chloroethyl)phosphate) and benzophenone; the ratios of sitostanol/coprostanol and coprostanol/(coprostanol+24-ethylcopstanol); real-time PCR (Polymerase Chain Reaction) human-specific (HF183 and B. adolescentis), pig-specific (Pig-2-Bac and L. amylovorus) and ruminant-specific (Rum-2-Bac) markers; and human FRNAPH genogroup II.  相似文献   

3.
Ebdon J  Muniesa M  Taylor H 《Water research》2007,41(16):3683-3690
Recent work has suggested that bacteriophages infecting Bacteroides are a potential tool for faecal source tracking, but that different host strains may be needed for different geographic areas. This study used a recently identified strain of Bacteroides (GB-124) to detect human sources of faecal pollution in a river catchment in southeast England (UK). A total of 306 river water, municipal wastewater and animal samples were obtained over a 16-month period. Bacteriophages capable of infecting GB-124 were present in all municipal wastewaters but were not detected in faecal samples from animals, and were detected at significantly lower levels (P< 0.001) in river waters directly downstream of a dairy farm. This last observation was despite the presence of high levels of faecal indicator bacteria at this site. The study suggests that GB-124 appears to be specific to human faeces. As such it may represent an effective and low-cost method of faecal source identification.  相似文献   

4.
Occurrence and prevalence of different bacterial enteric pathogens as well as their relationships with conventional (total and fecal coliforms) and alternative fecal indicators (host-specific Bacteroides 16S rRNA genetic markers) were investigated for various water samples taken from different sites with different degrees of fecal contamination. The results showed that a wide range of bacterial pathogens could be detected in both municipal wastewater treatment plant samples and in surface water samples. Logistic regression analysis revealed that total and human-specific Bacteroides 16S rRNA genetic markers showed significant predictive values for the presence of Escheriachia coli O-157, Salmonella, heat-labile enterotoxin (LT) of enterotoxigenic E. coli (ETEC), and heat-stable enterotoxin for human (STh) of ETEC. The probability of occurrence of these pathogenic bacteria became significantly high when the concentrations of human-specific and total Bacteroides 16S rRNA genetic markers exceeded 10(3) and 10(4) copies/100 mL. In contrast, Clostridium perfringens was detected at high frequency regardless of sampling sites and levels of Bacteroides 16S rRNA genetic markers. No genes related to Shigella spp., Staphylococcus aureus and Vibrio cholerae were detected in any samples analyzed in this study. Conventional indicator microorganisms had low levels of correlation with the presence of pathogens as compared with the alternative fecal indicators. These results suggested that real-time PCR-based measurement of alternative Bacteroides 16S rRNA genetic markers was a rapid and sensitive tool to identify host-specific fecal pollution and probably associated bacterial pathogens. However, since one fecal indicator might not represent the relative abundance of all pathogenic bacteria, viruses and protozoa, combined application of alternative indicators with conventional ones could provide more comprehensive pictures of fecal contamination, its source and association with pathogenic microorganisms.  相似文献   

5.
Detection of the faecal pollution contribution from wildfowl is an important adjunct in determining the sources of faecal pollution in waterways. This is particularly true, where human waste and other animal faecal sources have been eliminated as the pollution source. A polymerase chain reaction (PCR) marker was developed as a duck-specific marker of faecal pollution. The semi-nested primer system targeted an unknown bacterium (E2) isolated from mallard ducks. E2 had the closest 16S rRNA sequence similarity to members of the Desulfovibrio genus, which was further confirmed by phenotypic characterisation of the bacterium. Testing of the prevalence of E2 identified the marker in 76% of duck faecal samples (n=42), 20% of swan faecal samples (n=10) and 15% of Canada geese faecal samples (n=20). It was also identified in the faeces of two out of 15 domestic goats (13%). The marker was not detected in any samples derived from human faeces or effluent, dairy cows or sheep. It is proposed that this PCR marker would be useful in conjunction with faecal taxation indicators in the determination of pollution derived from duck faecal inputs in waterways.  相似文献   

6.
The objective of this study was to determine the frequency and densities of yeasts and filamentous fungi in coastal water samples as well as their correlation with the indicator bacteria of faecal pollution. The prevalence of fungi was investigated in parallel with the standard pollution indicator microorganisms in 197 marine water samples from six northern Greek prefectures during the bathing season May–October 1999. Filamentous fungi were isolated from all the examined samples and yeasts from 29 (14.7%) of them; among the positive samples, their mean counts were 90.9 and 38.4 cfu/100 ml, respectively. A total of 23 genera of filamentous fungi and four genera of yeasts were identified. Prevailing genera of filamentous fungi were Penicillium, Aspergillus and Alternaria spp., whereas Candida spp. was the most frequently isolated yeast. Counts of yeasts were significantly (p<0.01) correlated with those of total and faecal coliforms, whereas no correlation was found between filamentous fungi and the indicator bacteria of faecal pollution. Significantly higher counts of total and faecal coliforms (p<0.05), and enterococci (p<0.001), were found during the months with the higher water temperatures and bather numbers. In the six prefectures, significant differences were observed in the counts of filamentous fungi and yeasts as well as in the counts of all the faecal pollution indicators. The results of this study indicate that coastal water can be a path for contamination of swimmers with yeasts and filamentous fungi and that the pollution indicator microorganisms cannot always predict their presence.  相似文献   

7.
Campylobacter spp., Salmonella enterica, and Escherichia coli O157:H7 isolated from 898 faecal, 43 sewage, and 342 surface water samples from the Oldman River were characterized using bacterial subtyping methods in order to investigate potential sources of contamination of the watershed. Among these pathogens, Campylobacter spp. were the most frequently isolated from faecal, sewage, and surface water samples (266/895, 11/43, and 91/342, respectively), followed by Salmonella (67/898, 8/43, and 29/342, respectively), and E. coli O157:H7 (16/898, 2/43, and 8/342, respectively). Salmonella Rubislaw was the most common serovar isolated from water. This serovar was also isolated from two wild bird species. Most other serovars isolated from water were either not isolated from animals or were isolated from multiple species. E. coli O157:H7 was predominantly isolated from cattle. The most common phage-types of this pathogen from cattle were also the most common among water isolates, and there were exact pulsed field gel electrophoresis and comparative genomic fingerprint matches between cattle, sewage, and water isolates. Campylobacters were commonly isolated from surface waters and faeces from most animal species. Restriction fragment length polymorphism of the Campylobacter flaA gene identified several location and host species-specific (cattle, goose, pig) fingerprints. Molecular subtyping of these bacterial pathogens shows considerable promise as a tool for determining the sources of faecal pollution of water.  相似文献   

8.
The sterol content of faeces from humans and 14 species of animals common to rural or urban environments were examined. The major human faecal sterol was the 5β-stanol, coprostanol which constituted ≈ 60% of the total sterols found in human faeces. The sterol profiles of herbivores were dominated by C29 sterols and 5β-stanols were generally in equal or greater abundance than 5-stanols. The principal faecal biomarker of herbivores was 24-ethylcoprostanol. The sterol content of bird faeces was extremely variable and largely dependent on the animals diet. Both 5β and 5 stanols were in very low abundance in birds and dogs faeces from this study presumably due to the absence or low activity of the necessary anaerobic biota required to reduce Δ5- or Δ5,22-sterols to stanols. Cats and pigs were the only animals that had similar faecal sterol profiles to humans. However, the concentration of the principal human biomarker coprostanol was some 10 times more abundant on a dry weight basis in the faeces of humans than in those of cats and pigs. The source specificity of faecal sterol biomarkers is a combination of sterol intake, metabolic production of sterols and the biota resident within the animal's digestive tract. The “sterol fingerprints” of the faeces of humans and animals are sufficiently distinctive to be of diagnostic value in determining whether faecal pollution in water samples are of human or animal origin.  相似文献   

9.
Nnane DE  Ebdon JE  Taylor HD 《Water research》2011,45(6):2235-2246
In many parts of the world, microbial contamination of surface waters used for drinking, recreation, and shellfishery remains a pervasive risk to human health, especially in Less Economically Developed Countries (LEDC). However, the capacity to provide effective management strategies to break the waterborne route to human infection is often thwarted by our inability to identify the source of microbial contamination. Microbial Source Tracking (MST) has potential to improve water quality management in complex river catchments that are either routinely, or intermittently contaminated by faecal material from one or more sources, by attributing faecal loads to their human or non-human sources, and thereby supporting more rational approaches to microbial risk assessment. The River Ouse catchment in southeast England (U.K.) was used as a model with which to investigate the integration and application of a novel and simple MST approach to monitor microbial water quality over one calendar year, thereby encompassing a range of meteorological conditions. A key objective of the work was to develop simple low-cost protocols that could be easily replicated. Bacteriophages (viruses) capable of infecting a human specific strain of Bacteroides GB-124, and their correlation with presumptive Escherichia coli, were used to distinguish sources of faecal pollution. The results reported here suggest that in this river catchment the principal source of faecal pollution in most instances was non-human in origin. During storm events, presumptive E. coli and presumptive intestinal enterococci levels were 1.1-1.2 logs higher than during dry weather conditions, and levels of the faecal indicator organisms (FIOs) were closely associated with increased turbidity levels (presumptive E. coli and turbidity, r = 0.43). Spatio-temporal variation in microbial water quality parameters was accounted for by three principal components (67.6%). Cluster Analysis, reduced the fourteen monitoring sites to six representative ‘sentinel’ sites. The correlation coefficient between presumptive E. coli and phages of Bacteroides GB-124 was very small (r = 0.05) whilst that between turbidity and suspended solids was high (r = 0.62). Variations in climate, animal and anthropogenic interferences were all, either directly or indirectly, related to faecal contamination. The findings show the importance of meteorological conditions, such as storm events, on microbial water quality, and suggest that any future increases in the frequency of storm events (associated with climate change) are likely to result in a greater incidence of FIO/pathogen loads. This low-cost approach could help to predict spatio-temporal ‘hotspots’ of elevated waterborne disease risk. The work also represents an important step towards integrating novel MST tools into river catchment modelling.  相似文献   

10.
Most library-dependent bacterial source tracking studies using Escherichia coli (E. coli) have focused on strain diversity of isolates obtained from known human and animal faecal sources for library development. In contrast, this study evaluated the genotype variation of E. coli isolated from natural surface water using pulsed field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus sequence polymerase chain reaction (ERIC-PCR) to better understand these naturally occurring populations. A total of 650 water samples were collected over a nine month period from eleven sampling stations from Lake Waco and Belton Lake in Central Texas. Of the 650 water samples collected, 412 were positive for E. coli, yielding a total of 631 E. coli isolates (1-12 isolates collected per sample). PFGE and ERIC-PCR patterns were successfully generated for 555 isolates and were compared using the curve-based Pearson's product-moment correlation coefficient. The 555 E. coli isolates represented 461 PFGE genotypes, with 84% (386/461) of the genotypes being represented by individual isolates. The remaining 75 genotypes were represented by 2-5 isolates each. Using ERIC-PCR, the 555 E. coli isolates represented 175 genotypes, with 63% (109/175) of the genotypes being represented by individual isolates. In contrast to the PFGE results, two ERIC-PCR genotypes represented 37% of the E. coli isolates, (83 and 124 isolates, respectively), and were found throughout the watersheds both spatially and temporally. Based on the PFGE genotype diversity of water isolates, there is little evidence that a small number of environmentally-adapted E. coli represent dominant populations in the studied waterbodies. However, with the lower discriminatory power technique ERIC-PCR, an opposing conclusion might have been drawn. These results emphasize the importance of considering the resolving power of the source tracking technique being used when assessing strain diversity and geographical stability.  相似文献   

11.
Edge TA  Hill S 《Water research》2007,41(16):3585-3594
Multiple microbial source-tracking methods were investigated to determine the source of elevated Escherichia coli levels at Bayfront Park Beach in Hamilton Harbour, Lake Ontario. E. coli concentrations were highest in wet foreshore sand (114,000 CFU/g dry sand) and ankle-depth water (177,000 CFU/100mL), declining rapidly in deeper waters. Many gull and geese droppings were enumerated each week on the foreshore sand within 2m of the waterline. Both antimicrobial resistance analysis and rep-PCR DNA fingerprinting of E. coli collected at the beach and nearby fecal pollution sources indicated that E. coli in sand and water samples were predominantly from bird droppings rather than from pet droppings or municipal wastewater. Both methods indicated a trend of decreasing bird contamination, and increasing wastewater contamination, moving offshore from the beach. When foreshore sand was treated as a reservoir and secondary source of E. coli, waterborne E. coli were found to be more similar to sand isolates than bird or wastewater isolates out to 150 m offshore. Multiple lines of evidence indicated the importance of bird droppings and foreshore sand as primary and secondary sources of E. coli contamination in beach water at Bayfront Park.  相似文献   

12.
A collection of 366 Escherichia coli strains from 10 host groups and surface waters were tested for the presence of 15 virulence genes associated with strains causing intestinal and extra-intestinal infections. The virulence genes included eaeA, VT1, 2 and 2e, LT1, ST1 and 2, Einv gene, EAgg gene, CNF1 and 2, papC, O111 and O157 side chain LPS. Of the 262 strains obtained from nine different hosts, 39 (15%) carried one or more of these virulence genes. These included six strains from humans, two from horses, eight from dogs, two from ducks, five from cattle, seven from chickens, four from pigs, two from sheep and three from deer. Of the remaining 104 strains obtained from water samples, 10 (10%) also carried one or more of the tested virulence genes. Of these, six had identical biochemical phenotypes (BPTs) to strains isolated from humans (two strains), dogs (two strains), chickens (one strain) and sheep (one strain) with 4 BPTs also carrying same virulence genes. Our results indicate that the sources of clinically important E. coli strains found in surface waters due to faecal contamination can be predicted by using a combination of biochemical fingerprinting method and the detection of virulence genes. From the public health point of view this information will be of great importance for evaluating the risk associated with public use of the catchment.  相似文献   

13.
We previously reported that the macrophytic green alga Cladophora harbors high densities (up to 10(6) colony-forming units/g dry weight) of the fecal indicator bacteria, Escherichia coli and enterococci, in shoreline waters of Lake Michigan. However, the population structure and genetic relatedness of Cladophora-borne indicator bacteria remain poorly understood. In this study, 835 E. coli isolates were collected from Cladophora tufts (mats) growing on rocks from a breakwater located within the Indiana Dunes National Lakeshore in northwest Indiana. The horizontal fluorophore enhanced rep-PCR (HFERP) DNA fingerprinting technique was used to determine the genetic relatedness of the isolates to each other and to those in a library of E. coli DNA fingerprints. While the E. coli isolates from Cladophora showed a high degree of genetic relatedness (92% similarity), in most cases, however, the isolates were genetically distinct. The Shannon diversity index for the population was very high (5.39). Both spatial and temporal influences contributed to the genetic diversity. There was a strong association of isolate genotypes by location (79% and 80% for lake- and ditch-side samplings, respectively), and isolates collected from 2002 were distinctly different from those obtained in 2003. Cladophora-borne E. coli isolates represented a unique group, which was distinct from other E. coli isolates in the DNA fingerprint library tested. Taken together, these results indicate that E. coli strains associated with Cladophora may be a recurring source of indicator bacteria to the nearshore beach.  相似文献   

14.
Human-specific Bacteroides HF183 (HS-HF183), human-specific Enterococci faecium esp (HS-esp), human-specific adenoviruses (HS-AVs) and human-specific polyomaviruses (HS-PVs) assays were evaluated in freshwater, seawater and distilled water to detect fresh sewage. The sewage spiked water samples were also tested for the concentrations of traditional fecal indicators (i.e., Escherichia coli, enterococci and Clostridium perfringens) and enteric viruses such as enteroviruses (EVs), sapoviruses (SVs), and torquetenoviruses (TVs). The overall host-specificity of the HS-HF183 marker to differentiate between humans and other animals was 98%. However, the HS-esp, HS-AVs and HS-PVs showed 100% host-specificity. All the human-specific markers showed >97% sensitivity to detect human fecal pollution. E. coli, enterococci and, C. perfringens were detected up to dilutions of sewage 10−5, 10−4 and 10−3 respectively. HS-esp, HS-AVs, HS-PVs, SVs and TVs were detected up to dilution of sewage 10−4 whilst EVs were detected up to dilution 10−5. The ability of the HS-HF183 marker to detect fresh sewage was 3-4 orders of magnitude higher than that of the HS-esp and viral markers. The ability to detect fresh sewage in freshwater, seawater and distilled water matrices was similar for human-specific bacterial and viral marker. Based on our data, it appears that human-specific molecular markers are sensitive measures of fresh sewage pollution, and the HS-HF183 marker appears to be the most sensitive among these markers in terms of detecting fresh sewage. However, the presence of the HS-HF183 marker in environmental waters may not necessarily indicate the presence of enteric viruses due to their high abundance in sewage compared to enteric viruses. More research is required on the persistency of these markers in environmental water samples in relation to traditional fecal indicators and enteric pathogens.  相似文献   

15.
It has been suggested that bacteriophages can provide useful information about the pathogenic microorganisms, particularly enteric viruses, present in water. This information is complementary to that obtained from bacterial indicators of faecal contamination, which would be of great value for evaluating the risks associated with the use of certain types of water. Before bacteriophages can be used as indicators of faecal contamination, we need to confirm that bacteriophages give a different response to that given by the well-known bacteria indicators and to determine what happens to bacteriophages in river water. Indeed, drinking water is often produced from river water, either by natural filtration through the soil or after undergoing various treatments. We collected 96 river water samples from six different sites between February and November 2000. The samples were analysed for three faecal indicator bacteria (thermotolerant coliforms, enterococci and spores of sulphite-reducing anaerobes) and three types of bacteriophages (somatic coliphages, F-specific phages and Bacteroides fragilis phages). The densities of thermotolerant coliforms and enterococci depended mainly on physical factors such as flow rate and water temperature. High temperature and low flow rate led to a decrease in the density of these microorganisms, especially in the absence of a major input of faecal pollution. Conversely, the densities of somatic coliphages, F-specific phages and spores of sulphite-reducing anaerobes remained constant regardless of the flow rate and temperature. The density of Bacteroides fragilis phages was too low for unambiguous determination of their fate in river water.  相似文献   

16.
Quantitative microbial risk assessment (QMRA) was used to evaluate the relative contribution of faecal indicators and pathogens when a mixture of human sources impacts a recreational waterbody. The waterbody was assumed to be impacted with a mixture of secondary-treated disinfected municipal wastewater and untreated (or poorly treated) sewage, using Norovirus as the reference pathogen and enterococci as the reference faecal indicator. The contribution made by each source to the total waterbody volume, indicator density, pathogen density, and illness risk was estimated for a number of scenarios that accounted for pathogen and indicator inactivation based on the age of the effluent (source-to-receptor), possible sedimentation of microorganisms, and the addition of a non-pathogenic source of faecal indicators (such as old sediments or an animal population with low occurrence of human-infectious pathogens). The waterbody indicator density was held constant at 35 CFU 100 mL−1 enterococci to compare results across scenarios. For the combinations evaluated, either the untreated sewage or the non-pathogenic source of faecal indicators dominated the recreational waterbody enterococci density assuming a culture method. In contrast, indicator density assayed by qPCR, pathogen density, and bather gastrointestinal illness risks were largely dominated by secondary disinfected municipal wastewater, with untreated sewage being increasingly less important as the faecal indicator load increased from a non-pathogenic source. The results support the use of a calibrated qPCR total enterococci indicator, compared to a culture-based assay, to index infectious human enteric viruses released in treated human wastewater, and illustrate that the source contributing the majority of risk in a mixture may be overlooked when only assessing faecal indicators by a culture-based method.  相似文献   

17.
Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R2 = 0.998) and turbidity (R2 = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity pattern can be employed in microbial source tracking.  相似文献   

18.
We investigated the survival of Escherichia coli in two STPs utilising UV irradiation (STP-A) or chlorination (STP-B) for disinfection. In all, 370 E. coli strains isolated from raw influent sewage (IS), secondary treated effluent (STE) and effluent after the disinfection processes of both STPs were typed using a high resolution biochemical fingerprinting method and were grouped into common (C-) and single (S-) biochemical phenotypes (BPTs). In STP-A, 83 BPTs comprising 123 isolates were found in IS and STE, of which 7 BPTs survived UV irradiation. Isolates tested from the same sites of STP-B (n = 220) comprised 122 BPTs, however, only two BPTs were found post-chlorination. A representative isolate from each BPT from both STPs was tested for the presence of 11 virulence genes (VGs) associated with uropathogenic (UPEC) or intestinal pathogenic (IPEC) E. coli strains. Strains surviving UV irradiation were distributed among seven phylogenetic groups with five BPTs carrying VGs associated with either UPEC (4 BPTs) or IPEC (1 BPT). In contrast, E. coli strains found in STP-B carried no VGs. Strains from both STPs were resistant to up to 12 out of the 21 antibiotics tested but there was no significant difference between the numbers of antibiotics to which surviving strains were resistant to in these STPs. Our data suggests that some E. coli strains have a better ability to survive STPs utilising chlorination and UV irradiation for disinfection. However, strains that survive UV irradiation are more diverse and may carry more VGs than those surviving SPTs using chlorination.  相似文献   

19.
Contamination of surface waters is a pervasive threat to human health, hence, the need to better understand the sources and spatio-temporal variations of contaminants within river catchments. River catchment managers are required to sustainably monitor and manage the quality of surface waters. Catchment managers therefore need cost-effective low-cost long-term sustainable water quality monitoring and management designs to proactively protect public health and aquatic ecosystems. Multivariate and phage-lysis techniques were used to investigate spatio-temporal variations of water quality, main polluting chemophysical and microbial parameters, faecal micro-organisms sources, and to establish ‘sentry’ sampling sites in the Ouse River catchment, southeast England, UK. 350 river water samples were analysed for fourteen chemophysical and microbial water quality parameters in conjunction with the novel human-specific phages of Bacteroides GB-124 (Bacteroides GB-124). Annual, autumn, spring, summer, and winter principal components (PCs) explained approximately 54%, 75%, 62%, 48%, and 60%, respectively, of the total variance present in the datasets. Significant loadings of Escherichia coli, intestinal enterococci, turbidity, and human-specific Bacteroides GB-124 were observed in all datasets. Cluster analysis successfully grouped sampling sites into five clusters. Importantly, multivariate and phage-lysis techniques were useful in determining the sources and spatial extent of water contamination in the catchment. Though human faecal contamination was significant during dry periods, the main source of contamination was non-human. Bacteroides GB-124 could potentially be used for catchment routine microbial water quality monitoring. For a cost-effective low-cost long-term sustainable water quality monitoring design, E. coli or intestinal enterococci, turbidity, and Bacteroides GB-124 should be monitored all-year round in this river catchment.  相似文献   

20.
The objective of this study was to assess water quality in the Lake Oconee watershed and evaluate the best management practices used by cattle farms to reduce water contamination. Inorganic nutrient concentrations, algal abundance and faecal bacteria were highest in the cattle farming areas. The diatom community where cattle had no access was dominated by Achnanthidium minutissimum (Kützing) Czarnecki and Fragilaria crotonensis Kitton, and in sites where cattle were allowed direct access to the lake, Asterionella formosa Hassal, Nitzschia palea (Kützing) Smith and Navicula rostellata Kützing dominated. The latter three taxa are well‐known high‐nutrient diatoms. High populations of green algae (coccoid Desmidiaceae) were found where cattle had access. Sources of faecal pollution were identified using polymerase chain reaction detection, with Bifidobacterium adolescentis as a marker of human faecal pollution and Bacteroides (BoBac) indicating cattle faecal pollution. Overall, riparian buffers were most effective at reducing pollution from cattle operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号