首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of uranium-containing waters by the complexation/ultrafiltration (COUF) method using polyethylenimine (PEI) and disodium dihydrogen ethylenediaminetetraacetate (EDTA) as complexing agents was studied. The influence of pH of the solutions being purified on the treatment process was examined. With PEI and PEI-EDTA mixture at pH 7.0 and higher, the maximum possible coefficient of U(VI) retention by a UPM-20 membrane (0.999) is attained. Addition of EDTA to a solution containing a mixture of U and PEI improves the U(VI) retention, especially in the acidic pH region, owing to formation of mixed U(VI)-EDTA-PEI complexes. The formation constant of this complex was calculated by mathematical simulation.  相似文献   

2.
Treatment of U(VI)-contaminated waters by complexation/ultrafiltration (CUF), with polyethylenimine (PEI) and disodium dihydrogen ethylenediaminetetraacetate (EDTA) used as complexing agents, was studied. The maximum possible U(VI) retention coefficient with UPM-20 membrane, equal to 0.999, was attained with a mixture of PEI and EDTA at pH 4.5. The CUF treatment shows promise for decontamination of uranium-containing waters.  相似文献   

3.
A simple and sensitive method based on solid phase extraction (SPE) on acetyl acetone modified XAD-16 has been established for separation of Cr (III) and Cr (VI) from and industrial water samples. Two forms of chromium showed different exchange capacities at different pH values, viz. Cr (III) selectively retained at pH 5-7 whereas Cr (VI) retained at pH 1. Hence complete separation of the two forms of chromium is possible. Retained species were eluted with 5 mL of 2 mol L(-1) HNO(3) and 2 mol L(-1) NaOH. The detection limit of 0.02 and 0.014 microg mL(-1) was achieved for Cr (III) and Cr (VI), respectively, with an enrichment factor of 100 and 140. Various kinetic and thermodynamic parameters were also determined. The metal ion concentration was measured by atomic Absorption Spectroscopy. The possible retention mechanism is also discussed. The method was successfully applied for the speciation of chromium in industrial water samples.  相似文献   

4.
Different types of mucoadhesive polymers, intended for buccal tablet formulation, were investigated for their comparative mucoadhesive force, swelling behavior, residence time and surface pH. The selected polymers were carbopols (CP934, and CP940), polycarbophil (PC), sodium carboxymethyl cellulose (SCMC) and pectin representing the anionic type, while chitosan (Ch) as cationic polymer and hydroxypropylmethyl cellulose (HPMC) as a non-ionic polymer. Results revealed that polyacrylic acid derivatives (PAA) showed the highest bioadhesion force, prolonged residence time and high surface acidity. SCMC and chitosan ensured promising bioadhesive characteristics, whilst HPMC and pectin exhibited weaker bioadhesion. Different polymer combinations as well as formulations were evaluated to improve the mucoadhesive performance of the tablets. Bioadhesive tablet formulations containing either 5% CP934, 65% HPMC and 30% spray-dried lactose or 2% PC, 68% HPMC and 30% mannitol showed optimum mucoadhesion and suitable residence time. SCMC, when formulated individually, exhibited promising bioadhesion, acceptable swelling, convenient residence time and surface pH. In-vivo trials of these formulations proved non-irritative and prolonged residence of the mucoadhesive tablets on human buccal mucosa for 8 to 13 h.  相似文献   

5.
A method for sorption preconcentration of Cr(VI) from aqueous samples was developed using a polymer inclusion sorbent (PIS). The PIS used in this method was prepared by physical inclusion of Aliquat-336 in the matrix formed by cellulose triacetate and 2-nitrophenyl octyl ether. This sorbent was found to be stable, cost-effective, efficient for preconcentration of Cr(VI) present in the aqueous samples, and amenable to direct quantitative analysis of Cr(VI) held in it by neutron activation analysis and spectrophotometry. The quantifying of Cr(VI) in PIS by spectrophotometry was carried out by developing color directly on the PIS after reacting it with 1,5-diphenylcarbazide. The distinct color developed on the PIS even at very low concentrations of Cr(VI) suggests its possible use for field determination of Cr(VI). The composition of PIS was optimized to obtain maximum uptake of Cr(VI) without sacrificing uniformity in terms of thickness and distribution of ion-exchange sites, stability, and time required for quantitative sorption of Cr(VI) from aqueous samples. The Cr(VI) species held in the PIS, mainly HCrO4- and CrO4(2-), were found to vary as a function of pH of the aqueous samples from which Cr(VI) was preconcentrated. A close agreement was found in the abundances of Cr(VI) species held in the PIS with those reported in the literature for aqueous solutions at different pH. The variation of Cr(VI) species as a function of pH was found to have a significant impact on the tolerance to anions on the uptake of Cr(VI) in the PIS. The high selectivity of PIS toward Cr(VI) from aqueous solution at pH = 2 was explained on the basis of hydration of anions. The uptake of Cr(VI) was found to be fairly constant (88 +/- 3%) up to nearly complete exchange of counterions present in the PIS. The method developed in the present work was successfully used for the preconcentration of Cr(VI) from tap water and seawater samples containing low levels of Cr(VI).  相似文献   

6.
The aim of this study is to prepare ion-imprinted polymers, which can be used for the selective removal of Cr(VI) anions from aqueous media. 4-Vinyl pyridine (4-VP) was used as functional monomer. The Cr(VI)-imprinted poly(4-vinyl pyridine-co-2-hydroxyethyl methacrylate), poly(VP-HEMA), particles were prepared by bulk polymerization. The Cr(VI)-imprinted polymer particles were grained from the bulk polymer, and the template ions (i.e., Cr(VI)) were removed using thiourea (0.5%, v/v) in 0.5M HCl. The Cr(VI)-imprinted polymer contained 21.4 μmol 4-VP/g polymers. The specific surface area of the IIP2 particles was found to be 34.5m(2)/g (size range of 75-150 μm), and the swelling ratio was about to 108%. The effect of initial concentration of Cr(VI) anions, the adsorption rate and the pH of the medium on adsorption capacity of Cr(VI)-imprinting polymer were studied. The maximum experimental adsorption capacity was 3.31 mmol Cr(VI)/g polymer. Under competitive condition, the adsorption capacity of Cr(VI)-imprinted particles for Cr(VI) is 13.8 and 11.7 folds greater than that of the Cr(III) and Ni(II) ions, respectively. The first- and second order kinetics models were estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium capacity and correlation coefficients. The Langmuir adsorption isotherm model was well described the Cr(VI)-imprinted system and the maximum adsorption capacity (Q(max)) was found to be 3.42 mmol/g. Moreover, the reusability of the poly(VP-HEMA) particles was tested for several times and no significant loss in adsorption capacity was observed.  相似文献   

7.
采用浸没沉淀相转化法制备聚醚酰亚胺(PEI)平板超滤膜,考察了铸膜液中聚合物PEI浓度、添加剂聚乙烯吡咯烷酮(PVP)浓度对膜结构和性能的影响。为提高超滤膜的耐溶剂性能,采用己二胺(HDA)进行化学交联,并研究了不同交联时间下膜性能的差异。结果表明:在不降低膜分离性能的情况下,交联后的膜渗透通量得到了有效提高,在0.1 MPa运行压力下纯水通量由667.1 L/(m^(2)·h)提高到1126.1 L/(m^(2)·h),而对1.0 g/L牛血清白蛋白(BSA)溶液的截留率保持在97%以上。膜溶剂吸附实验发现,在6种不同溶剂中浸泡48 h后,未交联膜在N,N-二甲基甲酰胺(DMF)中已完全溶解,而交联膜仍保持着良好的膜形态,吸附量为0.86 g/g,在乙醇、异丙醇、正己烷、1 mol/L HCl溶液中的吸附量均小于未交联膜,在1 mol/L NaOH溶液中反而增加,说明制备得到的交联膜具有良好的耐溶剂性能和耐强酸性能,耐强碱性能反而变差。  相似文献   

8.
Clay minerals modified with polyethylenimines (Mn-t-PEI) show promise for sorption treatment of wastewaters to remove U(VI) and for U(VI) preconcentration in determination of its low concentrations. Conditions are found for preparing modified sorbents: The optimal pH range for PEI sorption to prepare the modified sorbents is ≥9.0, which suggests electrostatic interaction of PEI with montmorillonite. The maximal sorption of the linear and branched polymers on montmorillonite, calculated from the sorption isotherms, is 0.32–0.38 g PEI/g mineral. The U(VI) sorption value on natural montmorillonite is considerably lower than on Mn-t-PEI, where the isotherm at low U(VI) concentrations is practically linear and the degree of U(VI) sorption exceeds 97% (depending on the uranium content).  相似文献   

9.
马碧荣  刘富  薛立新 《功能材料》2012,43(19):2666-2670,2674
利用溶液相转化法,在铸膜液中加入分子筛NaA和PEG来协同提高聚砜超滤膜的水通量和截留率,研究了分子筛的含量对聚砜超滤膜的形貌结构,表面粗糙度,水通量,蛋白质截留率和亲水性的影响。利用场发射扫描电镜、扫描探针原子力显微镜、膜评价仪和接触角仪分别对该膜的形貌、水通量、蛋白质截留率和亲水性进行表征。结果表明分子筛含量从0g增加到3.0g,聚砜超滤膜的水通量从140L/(m2·h)提高到500L/(m2·h),对胃蛋白酶的截留率从78.8%提高到92.7%,对牛血清蛋白的截留率从97.6%增加到99.0%以上。分子筛NaA可以协同提高聚砜超滤膜的水通量和蛋白质截留率。  相似文献   

10.
A process for purifying aqueous solutions containing heavy and toxic metals such as chromium has been investigated. Chromium salts are largely used in various industries including leather-manufacturing industry. Ultrafiltration processes are largely being applied for macromolecular and heavy metal ion separation from aqueous streams. Cellulose acetate and sulfonated poly(ether ether ketone) blend ultrafiltration membranes were prepared by precipitation phase inversion technique in 100/0, 90/10, 80/20 and 70/30% polymer blend compositions and subjected to the rejection of chromium at different concentrations such as 200, 400, 600, 800 and 1000 ppm with a water-soluble macroligand (polyvinylalcohol). Factors affecting the percentage rejection and permeate flux such as pH, concentration of solute, concentration of PVA, transmembrane pressure and composition of blend membranes were investigated. It was found that percentage rejection improved at a pH 6 and a macroligand concentration of 2 wt.%. The transmembrane pressure and concentration of solute also have an effect on the separation and product rate efficiencies of the blend membranes.  相似文献   

11.
Cui H  Fu M  Yu S  Wang MK 《Journal of hazardous materials》2011,186(2-3):1625-1631
Biosorption, as an effective and low-cost technology treating industrial wastewaters containing Cr(VI), has become a significant concern worldwide. In this work, acid-modified byproducts of beer production (BBP) were used to remove Cr(VI) from aqueous solutions. Removal of Cr(VI) increases as the pH is decreased from 4.0 to 1.5, but the maximum of total Cr removal is obtained in a pH range from 2.0 to 2.5. Nearly 60% of the initial Cr(VI) (100 mg L(-1)) was adsorbed or reduced to Cr(III) within the first 10 min at pH 2.0. The Cr(VI) removal capability of acid-modified BBP materials was almost completely retained after regenerating with acid. FT-IR and XPS spectra revealed that carboxylate and carboxyl groups on the surface of modified BBP materials play a major role in Cr(VI) binding and reduction, whereas amide and other groups play a minor role in the Cr(VI) removal process.  相似文献   

12.
The adsorption behaviour of amorphous aluminium oxide was studied with respect to Cr(VI) in order to consider its application to purify electroplating wastewaters. A batch method was employed using Cr(VI) concentrations ranged from 10 to 200mg/l. The Langmuir model was found to describe the adsorption process well, offering a maximum adsorption capacity of 78.1mg/g. The effect of ionic strength (0-0.1M KNO(3)), pH (3-9) and competitive solutes (molar ratio [Cr(VI)]/[SO(4)(2-)]=1 and 100) on the retention process was evaluated. Cr(VI) adsorption on amorphous aluminium oxide appeared to be dependent on ionic strength with a more pronounced effect in acid conditions. Conversely, adsorption was not affected by pH in acid medium, but decreased when pH sifted to alkaline values. The presence of SO(4)(2-) greatly reduced Cr(VI) removal across the entire pH range when both solutes were present in similar concentrations. Amorphous aluminium oxide also showed a high adsorption capacity when used in the purification of Cr(VI) electroplating wastewaters. The adsorbent doses required to attain more than 90% of Cr(VI) removal varied between 1 and 5 g/l depending on Cr(VI) concentration in wastewaters.  相似文献   

13.
The interpolymeric complexation of carrageenan and chitosan was investigated for its effect on drug release from polymeric matrices in comparison to single polymers. For this purpose, matrices with carrageenan: chitosan (CG:CS) ratios of 100%, 75%, 50%, 25%, and 0% were prepared at 1:1 drug to polymer ratio. The effect of dissolution medium and drug type on drug release from the formulations was addressed. Two model drugs were utilized: diltiazem HCl (DZ) as a salt of a basic drug and diclofenac Na (DS) as a salt of an acidic drug. Three dissolution media were used: water, simulated gastric fluid (SGF), and simulated intestinal fluid (SIF). Some combinations of the two polymers showed remarkable sustained release effect on DZ in comparison to the single polymers in water and SGF. However, no apparent effect for the combination on DZ release was shown in SIF. The medium effect was explained by the necessity of chitosan ionization, which could be attained by the acidic SGF or microacidic environment created by the used acidic salt of DZ in water, but not in SIF. An interaction between the medium type and CG:CS ratio was also found. With DS, the polymer combinations had similar dissolution profiles to those of the single polymers in water and SIF, which was explained by the lack of chitosan ionization by the medium or the drug basic salt. The dissolution profiles could not be obtained in SGF, which was attributed to the conversion of DS into diclofenac free acid. The importance of chitosan ionization for its interaction with CG to have an effect on the release of DS was demonstrated by performing dissolution of SGF presoaked tablets of DS in SIF, which showed an effect of combining the two polymers on sustaining the drug release.  相似文献   

14.
A novel cell separation and immobilization method for Cr (VI)-reduction under alkaline conditions was developed by using superparamagnetic Fe(3)O(4) nanoparticles (NPs). The Fe(3)O(4) NPs were synthesized by coprecipitation followed by modification with sodium citrate and polyethyleneimine (PEI). The surface-modified NPs were monodispersed and the particle size was about 15 nm with a saturation magnetization of 62.3 emu/g and an isoelectric point (pI) of 11.5 at room temperature. PEI-modified Fe(3)O(4) NPs possess positive zeta potential at pH below 11.5, presumable because of the high density of amine groups in the long chains of PEI molecules on the surface. At initial pH 9.0, Pannonibacter phragmitetus LSSE-09 cells were immobilized by PEI-modified NPs via electrostatic attraction and then separated with an external magnetic field. Compared to free cells, the coated cells not only had the same Cr (VI)-reduction activity but could also be easily separated from reaction mixtures by magnetic force. In addition, the magnetically immobilized cells retained high specific Cr (VI)-reduction activity over six batch cycles. The results suggest that the magnetic cell separation technology has potential application for Cr (VI) detoxification in alkaline wastewater.  相似文献   

15.
Various oxidation states of polyaniline, as film and powder, were used for reduction of highly toxic Cr(VI) to less toxic Cr(III) ion. The effects of various parameters such as synthesis method, physical and oxidation state of polyaniline, film thickness, solution pH and initial Cr(VI) concentration on the kinetics and efficiency of reduction process were investigated. Results showed that a very broad concentration range of Cr(VI) solutions (10-10(5)ppb by emeraldine base and 10-10(6.5)ppb by leucoemeraldine) can be efficiently (>98%) reduced by polyaniline as film or powder. Cr(VI) solutions with concentrations higher than these ranges were caused to the overoxidation and degradation of polymer. Decreasing of solution pH, increased the kinetics and performance of reduction process, but lowered the Cr(VI) concentration ranges caused the overoxidation and degradation of the polymer. Higher reduction efficiencies were obtained for thicker electrochemically synthesized polyaniline films and for thinner chemically prepared polyaniline free standing films. The ability or capacity of various forms of polyaniline in Cr(VI) reduction was evaluated as the milligrams of Cr(VI) reduced by one gram of various forms of polyaniline.  相似文献   

16.
Fixed-bed column studies were conducted to evaluate performance of a short-chain polymer, polyaniline, synthesized on the surface of jute fiber (PANI-jute) for the removal of hexavalent chromium [Cr(VI)] in aqueous environment. Influent pH, column bed depth, influent Cr(VI) concentrations and influent flow rate were variable parameters for the present study. Optimum pH for total chromium removal was observed as 3 by electrostatic attraction of acid chromate ion (HCrO(4)(-)) with protonated amine group (NH(3)(+)) of PANI-jute. With increase in column bed depth from 40 to 60 cm, total chromium uptake by PANI-jute increased from 4.14 to 4.66 mg/g with subsequent increase in throughput volume from 9.84 to 12.6L at exhaustion point. The data obtained for total chromium removal were well described by BDST equation till 10% breakthrough. Adsorption rate constant and dynamic bed capacity at 10% breakthrough were observed as 0.01 L/mgh and 1069.46 mg/L, respectively. Adsorbed total chromium was recovered back from PANI-jute as non-toxic Cr(III) after ignition with more than 97% reduction in weight, minimizing the problem of solid waste disposal.  相似文献   

17.
To improve the removal efficiency of heavy metals from wastewater, the surface of a fungal biomass was modified to obtain a high-capacity biosorbent for Cr(VI) in wastewater. The effects of pH, initial concentration, and sorption time on Cr(VI) removal by polyethylenimine (PEI)-modified Phanerochaete chrysosporium were investigated. The biomass adsorption capacity was significantly dependent on the pH of the solution, and the optimum pH was approximately 3.0. The maximum removal for Cr(VI) was 344.8 mg/g as determined with the Langmuir adsorption isotherm. Pseudo-first-order Lagergren model is better than pseudo-second-order Lagergren model when simulating the kinetic experiment results. Furthermore, an amount of Cr(VI) was reduced to Cr(III), indicating that some reactions occurred on the surface of the biomass leading to the reduction of Cr(VI). The point of zero potential for the modified biomass increased from an initial pH of 3.0 to a much higher value of 10.8, indicating that the PEI-modified biomass is better than the pristine biomass for adsorption of anionic adsorbates. Results showed that the PEI-modified biosorbent presented high efficiency in treating Cr(VI)-contaminated wastewater.  相似文献   

18.
The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using long-term column experiments, for aqueous Cr(VI) solutions having low buffering capacities, over the pH range of 2.00-7.30. The results showed that the initial pH of Cr(VI) solution significantly affects the reduction capacity of scrap iron. The highest reduction capacity was determined to be 19.2 mg Cr(VI)/g scrap iron, at pH 2.50, and decreased with increasing the initial pH of Cr(VI) solution. A considerable decrease in scrap iron reduction capacity (25%) was also observed at pH 2.00, as compared to pH 2.50, due to the increased contribution of H(+) ions to the corrosion of scrap iron, which leads to a rapid decrease in time of the scrap iron volume. Over the pH range of 2.50-7.30, hexavalent chromium concentration increases slowly in time after its breakthrough in column effluent, until a steady-state concentration was observed; similarly, over the same pH range, the amount of solubilized Cr(III) in treated column effluent decreases in time, until a steady-state concentration was observed. The steady-state concentration in column effluent decreased for Cr(VI) and increased for Cr(III) with decreasing the initial pH of Cr(VI) solution. No steady-state Cr(VI) or Cr(III) concentrations in column effluent were observed at pH 2.00. Over the entire studied pH range, the amount of Fe(total) in treated solution increases as the initial pH of column influent is decreased; the results show also a continuously decrease in time of Fe(total) concentration, for a constant initial pH, due to a decrease in time of iron corrosion rate. Cr(III) concentration in column effluent also continuously decreased in time, for a constant initial pH, over the pH range of 2.50-7.30. This represents an advantage, because the amount of precipitant agent used to remove Fe(total) and Cr(III) from the column effluent will also decrease in time. The optimum pH for Cr(VI) reduction with scrap iron in continuous-flow system was established at the value of 2.50.  相似文献   

19.
A hydrous titanium(IV) oxide was prepared to study the adsorption characteristics and the separation of chromium species. Batch sorption studies have been carried out to determine the effect of pH on the sorption of Cr(III) and Cr(VI) on hydrous TiO2. An excellent separation efficiency of Cr(III) and Cr(VI) was obtained at pH 2. The adsorption percentage of Cr(VI) was above 99%, whereas that of the Cr(III) was less than 1% at this pH. The adsorption isotherm of Cr(VI) on hydrous TiO2 at pH 2 was in good agreement with the Langmuir isotherm. The maximum adsorption capacity of Cr(VI) on TiO2 was 5 mg g(-1). The rate of adsorption of Cr(VI) by hydrous TiO2 with average particle diameter 250 and 500 microm has been studied under particle diffusion controlled conditions. The diffusion coefficients of Cr(VI) for both hydrous TiO2 having average particle diameter of 250 and 500 microm was calculated at pH 2 as 3.84 x 10(-10) m2 s(-1) and 8.86 x 10(-10) m2 s(-1), respectively.  相似文献   

20.
This study examined the performance of nanofiltration membranes to retain atrazine and dimethoate in aqueous solution under different pH conditions. Four nanofiltration membranes, NF90, NF200, NF270 and DK are selected to be examined. The operating pressure, feed pesticide and stirring rate were kept constant at 6x10(5) Pa, 10 mg/L and 1000 rpm. It was found that increasing the solution's pH increased atrazine and dimethoate rejection but reduced the permeate flux performance for NF200, NF270 and DK. However, NF90 showed somewhat consistent performance in both rejection and permeate flux regardless of the solution's pH. NF90 maintained above 90% of atrazine rejection and approximately 80% of dimethoate rejection regardless of the changes in solution's pH. Thus, NF90 is deemed the more suitable nanofiltration membrane for atrazine and dimethoate retention from aqueous solution compared to NF200, NF270 and DK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号