首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocomposite of polyaniline containing Fe3O4 and Fe2O3 was synthesized by a chemical method using hydroxypropylcellulose as a steric stabilizer. The characteristics of product such as, morphology, conductivity, and particle size were studied. The results indicate that, these properties were dependent on the surfactant, amount and type of metallic oxide. When the concentration of Fe2O3 and Fe3O4 increased from 1 to 5 g/L, in PAn/Fe2O3 and PAn/Fe3O4 composites the conductivity decreased from 1.2 × 10?6 to 1.1 × 10?8 and 2.8 × 10?6 to 1.1 × 10?8S/cm, respectively, while the particle size of nanocomposite increased from 96 to 110, and 97 to 115 nm, respectively.  相似文献   

2.
Four new ion-selective electrodes (ISEs), based on N,N′-bis(salicylaldehyde)-p-phenylene diamine (SPD) as ionophore, are constructed for the determination of copper(II) ion. The modified carbon paste (MCPEs; electrodes I and II) and modified screen-printed sensors (MSPEs; electrodes III and IV) exhibit good potentiometric response for Cu(II) over a wide concentration range of 1.0 × 10?6 – 1.0 × 10?2 mol L?1 for electrodes (I and II) and 4.8 × 10?7–1.0 × 10?2 mol L?1 for electrodes (III and IV) with a detection limit of 1.0 × 10?6 mol L?1 for electrodes (I and II) and 4.8 × 10?7 mol L?1 for electrodes (III and IV), respectively. The slopes of the calibration graphs are 29.62 ± 0.9 and 30.12 ± 0.7 mV decade?1 for electrode (I) (tricresylphosphate (TCP) plasticizer) and electrode (II) (o-nitrophenyloctylether o-NPOE plasticizer), respectively. Also, the MSPEs showed good potentiometric slopes of 29.91 ± 0.5 and 30.70 ± 0.3 mV decade?1 for electrode (III) (TCP plasticizer) and electrode (IV) (o-NPOE plasticizer), respectively. The electrodes showed stable and reproducible potentials over a period of 60, 88, 120, and 145 days at the pH range from 3 to 7 for electrodes (II), (III), and (IV) and pH range from 3 to 6 for electrode (I). This method was successfully applied for potentiometric determination of Cu(II) in tap water, river, and formation water samples in addition to pharmaceutical preparation. The results obtained agree with those obtained with the atomic absorption spectrometry (AAS).  相似文献   

3.
The permeability of metallic and ceramic open-cell foams prepared by the gelcasting technique was assessed by fitting of Forchheimer’s equation to experimental pressure drop curves. The ceramic composition was based on pure hydroxyapatite, while the metallic composition was based on titanium metal. Experimental Darcian (k 1) and non-Darcian (k 2) permeability constants displayed values in the range 0.40–3.24 × 10?9 m2 and 3.11–175.8 × 10?6 m respectively. Tortuosity was evaluated by gas diffusion experiments and ranged from 1.67 to 3.60, with porosity between 72 and 81% and average hydraulic pore size between 325 and 473 μm. Such features were compared to data reported in the literature for cancellous bones and synthetic scaffolds for bone graft. A detailed discussion concerning the limitations of Darcy’s law for fitting laboratory data and for predicting fluid flow through scaffolds in real biomedical applications is also performed. Pore size was obtained by image analysis and was also derived from permeation-absorption-diffusion experiments. In both cases, values were within the range expected for porous scaffolds applications.  相似文献   

4.
The PT/PS/SiO2 nanocomposite of polythiophene (PT), polystyrene (PS), and SiO2 with a grain size of 100–150 nm was synthesized by chemical polymerization using FeCl3 oxidant in nanoqueous medium (CHCl3). The properties of PT/PS/SiO2 synthesized were compared to those of PT, PT/PS, and PT/SiO2 synthesized in the same conditions. The synthesized materials were subsequently characterized by FTIR spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The incorporation of PT in the composite was endorsed by FTIR studies. TGA revealed enhanced thermal stability of the PT/PS/SiO2 nanocomposite compared to that of PT. SEMs showed globular particles and the presence of clusters of composite particles. The conductivity of the PT/PS/SiO2 nanocomposite was measured as 1.30×10?7 Scm?1 and the conductivity value of PT (1.02×10?4 Scm?1) decreased with entiring PS and SiO2 to PT structure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 746–752, 2005  相似文献   

5.
The objective of this work was to obtain experimental data and modeling of osmotic dehydration kinetics of pumpkin fruits (Cucurbita pepo L.) with aqueous NaCl/sucrose solutions. For this purpose, effective diffusion coefficients for water, sucrose, and NaCl were calculated by means of a simple model based on Fick's second law. Water loss achieved 80%, sucrose 13%, and NaCl 6% of the initial sample weight. Effective diffusion coefficients ranged from 0.58–1.40 × 10?9 m2/s, 0.75–1.23 × 10?9 m2/s, and 2.60–4.11 × 10?9 m2/s for water, sucrose, and NaCl, respectively. The proposed model gave a good correlation of the experimental data. The quality of the operation was evaluated by analysis of the values of WL/SG ratio.  相似文献   

6.
NiO(8 %)/Ni,H-ZSM-5 + Al2O3 (1:1) catalysts differing in metal-support interactions, which influenced the metal-to-acid ratios, were examined. The interactions were changed by modifying the method of zeolite and aluminium hydroxide combining and the method of Ni incorporation. The catalysts were characterised by ICP, XRD, N2 sorption, SEM, TEM, NH3-TPD, Py-IR, TPR, H2 chemisorption and XPS. The effect of metal-support interactions was determined during n-C6 conversion in a continuous system at H2:CH = 7:1 Nm3/m3, 0.1 MPa and LHSV = 1 h?1. It was found that over the catalysts with weaker Ni–alumina interactions (n Ni_a/n, 3.2 × 10?2 and 4.8 × 10?2), selectivity to isomerisation products was by 10–35 % higher, and selectivity to high boiling hydrocarbons by 10–30 % lower than over the catalysts with stronger Ni-support interactions (n Ni_a/n, 1.2 × 10?2 and 1.8 × 10?2).  相似文献   

7.
This study investigated the potential use of oxidation in a photoelectrocatalytic cell for bleaching p-nitrosodimethylaniline. The Ti/TiO2 used as photo-anode was prepared by a pulsed laser deposition method. The TiO2 coatings were found to have rutile and anatase structures consisting of approximately 10 and 15 nm in diameter, respectively. A relatively high degradation rate of p-nitrosodimethylaniline was recorded using the photoelectrocatalytic cell, compared to those measured during conventional electrochemical oxidation, direct photolysis and photocatalysis processes. The influence of different parameters such as crystallographic structure of Ti/TiO2, type of cathode, potential applied, electrolysis time, UV irradiation and initial pH were investigated. The photoelectrocatalytic cell using Ti/TiO2 (anatase structure) as photo-anode and vitreous carbon as cathode operated at a current intensity of 0.1 A for 120 min with 254 nm of UV irradiation was found to have the best conditions to remove high amounts of p-nitrosodimethylaniline (22.6 × 10?3 mM h?1).  相似文献   

8.
《分离科学与技术》2012,47(5):635-642
In this study, the influence of pH, electrolyte concentration, and type of ionic species on the electrokinetic properties (zeta potential and electrokinetic charge density) of the acid-activated montmorillonite mineral have been investigated using the microelectrophoresis method. The electrokinetic properties of acid-activated montmorillonite dispersions have been determined in aqueous solutions of mono-, di-, and trivalent salts and divalent heavy metal salts. Zeta potential experiments have been performed to determine the point of zero charge (pzc) and potential determining ions (pdi). The zeta potential values of the acid-activated montmorillonite particles were negative and did not vary significantly within the pH range studied. Acid-activated montmorillonite dispersions do not have point of zero charge (pzc). The valence of the electrolytes has a great influence on the electrokinetic behavior of the suspension. A gradual decrease in the zeta potential (from ?25 mV to ?5 mV) occurs with the monovalent electrolytes when concentration increased. Divalent and heavy metal electrolytes have less negative z-potentials due to the higher valence of ions. A sign reversal of z-potential has been observed at AlCl3, FeCl3, and CrCl3 electrolytes (potential determining ions) and zeta potential values have had a positive sign at high electrolyte concentrations.

The electrokinetic charge density of acid-activated montmorillonite has shown similar trends for variation in mono- and divalent electrolyte solutions. Up to concentrations of ca. 10?3 M, it has remained practically constant at approximately 0.5 × 10?3 C m?2 For higher concentrations of monovalent electrolytes more negative values (?16 × 10?3 C m?2) were observed. It has less negative values in divalent electrolyte concentrations according to monovalent electrolytes (?5 × 10?3 C m?2). For low concentrations of trivalent electrolytes, the electrokinetic charge density of montmorillonite particles is constant, but at certain concentrations it rapidly increased and changed its sign to positive.  相似文献   

9.
Structural changes of FeOx nanostructures supported on Pt(111) and Pt foil with response to oxidation and reduction treatments in O2 and H2 atmospheres upto 1.0 bar have been investigated by using X-ray photoelectron spectroscopy and scanning tunneling microscopy. We show that submonolayer O–Fe bilayer (FeO) structure on Pt(111) can be transformed to O–Fe–O trilayer (FeO2) upon oxidation in 5.0 × 10?6 mbar O2, while the FeO to FeO2 transformation happens over the full FeO film only with the O2 partial pressure above 1.0 × 10?3 mbar. Reduction of the submonolayer FeO2 structure back to the FeO structure occurs when exposed to 1.0 mbar H2 at room temperature (RT). In contrast, the full FeO2 structure can be kept even under 1.0 bar H2 exposure condition. The FeOx coverage and FeOx/Pt boundary play a critical role in the redox behavior of the supported FeOx nanostructures. Furthermore, we show that the FeOx nanostructures supported on Pt foil can be oxidized in a similar way as those on the Pt(111) surface. However, the Pt foil supported FeO2 nanostructures can be more deeply reduced to the state close to metallic Fe in 1.0 mbar H2 at RT. The close-packed Pt(111) surface exhibits a stronger confinement effect on the FeO overlayer than the open polycrystalline Pt surface.  相似文献   

10.
《Ceramics International》2022,48(12):17328-17334
Multi-element doping is an effective method to suppress the leakage of BiFeO3 (BFO). A systematic study on the effect of various elements (La, Er, Zn, Ti) doping on the leakage performance, mechanism and other electrical properties of BFO films was performed As the kinds of doping elements increases, the leakage current density of the BFO film gradually decreases. The leakage current density is gradually reduced from 5.78 × 10?2 A/cm2 doped with one element (La) to 1.25 × 10?2 A/cm2 doped with two elements (La, Ti), 4.13 × 10?3 A/cm2 doped with three elements (La, Ti, Zn), and 4.53 × 10?4 A/cm2 doped with four elements (La, Er, Zn, Ti). Finally, compared with pure BFO films, the leakage current density in doped BFO films is reduced by two orders of magnitude. Moreover, the conduction mechanism in doped BFO films is gradually changed from space charge limited current to ohmic conduction. This work provides an effective method to ameliorate the leakage of ferroelectric materials and lays a foundation for the practical application of BFO-based films.  相似文献   

11.
Equilibrium behavior for the H+/H2 couple has been verified at gold electrodes from partial pressures of 1 to about 6 × 10?4 atm. The study was conducted in a high-purity, tight, electrochemical system in which the Po2 above the cell solution was ×<10?9 atm. To assure reversible behavior, solution wetting inside the gold/glass seal had to be prevented. Techniques for preparing clean reversible Au electrodes, cell cleaning, gas purification and high-purity electrolyte preparation are described.  相似文献   

12.
Ti/Pt/SnO2–Sb2O4 electrodes were prepared by alternating Sn and Sb electrodepositions, repeated 4 or 16 times, onto a platinized titanium foil by a thermo-electrochemical method. Chemical, electrochemical, and structural tests have been used for the characterization of Ti/Pt/SnO2–Sb2O4 electrodes. Anodic oxidation of the aqueous solution contaminated by amoxicillin, clofibric acid, diclofenac, and ibuprofen having a concentration of 100 mg L?1 and 0.035 M of Na2SO4 have been applied using Ti/Pt/SnO2–Sb2O4 electrodes at a current density of 10 and 30 mA cm?2. The chemical oxygen demand removals increased with current density and except for diclofenac, the Ti/Pt/SnO2–Sb2O4 electrode with 4 electrodeposition repetitions gave the best results. The combustion efficiencies for diclofenac and ibuprofen were higher than those obtained with similar electrode material, prepared without platinization, especially in the assay run with Ti/Pt/SnO2–Sb2O4 (16 electrodeposition repetitions).  相似文献   

13.
《分离科学与技术》2012,47(8):1793-1807
Abstract

In the present work, a study of the kinetics of adsorption of Cs+, Co2+, and Sr2+ on four hydrous titanium oxides, prepared in different media, and designated as Ti‐I, Ti‐II, Ti‐III, and Ti‐IV, was carried out. In the aqueous medium, the internal diffusion coefficients, Di for Cs+ were found to be equal to 3.7×10?9, 3.7×10?9, 2.3×10?9, and 1.5?10?9 cm2/s, in Ti‐I, Ti‐II, Ti‐III, and Ti‐IV, respectively. For Co2+ and Sr2+, these values are equal to 0.96×10?9 and 0.64×10?9 cm2/s, respectively for Ti‐IV. In Ti‐IV, Di for all ions generally increases on adding methanol or propanol. This is probably due to greater dehydration, leading to faster ion diffusion, and, hence, to a decrease of ion mobility due to stronger interaction with the surface. In all media in Ti‐IV, the order: Di(Cs+)>Di(Co2+)≥Di(Sr2+) was found which is due to a stronger interaction of the bivalent ions with the exchange sites.  相似文献   

14.
The kinetics of aluminium deposition from NaClAlCl3 and NaClKClAlCl3 melts (cAlCl3 < 0.4 mol%) was studied by linear sweep voltammetry and potential step amperometry. The reduction of AlCl3 on tungsten and aluminium electrodes was found to be diffusion controlled. The diffusion coefficients of AlCl3 were: 3.5 × 10?5 cm2 s?1 at 820°C in NaClAlCl3, 2.7 × 10?5cm2s?1 at 825°C, and 2.1 × 10?5cm2s?1 at 705°C in KClNaClAlCl3. The rate constant for AlCl3 reduction at these conditions was found to be in the order of 0.2 cm s?1, in good agreement with extrapolated literature data.  相似文献   

15.
This study introduces a spark discharge system (SDS) as a way to simulate welding fumes. The SDS was developed using welding rods as electrodes with an optional coagulation chamber. The size, morphology, composition, and concentration of the fume produced and the concentration of ozone (O3) and nitrogen oxides (NOX) were characterized. The number median diameter (NMD) and total number concentration (TNC) of fresh fume particles were ranged 10–23 nm and 3.1×107 ? 6×107 particles/cm3, respectively. For fresh fume particles, the total mass concentration (TMC) measured gravimetrically ranged 85–760 μg/m3. The size distribution was stable over a period of 12 h. The NMD and TNC of aged fume particles were ranged 81–154 nm and 1.5×106?2.7×106 particles/cm3, respectively. The composition of the aged fume particles was dominated by Fe and O with an estimated stoichiometry between that of Fe2O3 and Fe3O4. Concentrations of O3 and NOX were ranged 0.07–2.2 ppm and 1–20 ppm, respectively. These results indicate that the SDS is capable of producing stable fumes over a long-period that are similar to actual welding fumes. This system may be useful in toxicological studies and evaluation of instrumentation.

Copyright 2014 American Association for Aerosol Research  相似文献   


16.
Nanocomposites electrolytes consisting of La3+ and Zr4+ doped with ceria labelled as La0.2 Ce0.8 O2-δ (LDC), Zr0.2Ce0.8O2-δ (ZDC) and Zr0.2La0.2Ce0.6O2-δ (ZLDC) have been synthesized via a co-precipitation route. DC conductivity was studied with a four-probe method in the range of temperature 450–650 °C and maximum conductivity was found to be 0.81 × 10?2 S.cm?1 (LDC) > 0.32 × 10?2 S.cm?1 (ZLDC) > 0.15 × 10?2 S.cm?1 (ZDC) at a temperature of 650 °C, respectively. Further, electric behavior of doped and co-doped ceria electrolytes was investigated by A.C electrochemical impedance spectroscopy (frequency range ~ 0.1 Hz?4 MHz). The phase/structural identification of the material prepared was studied using X-ray diffraction and found ceria to possess a cubic fluorite structure. Scanning electron microscopy (SEM) was carried out to study its morphology and particle size (~ 90–120 nm). Thermal behavior on its change in weight and length with the temperature were studied by thermogravimetric analysis (TGA) and dilatometry respectively. Furthermore, thermal expansion coefficients (TECs) of prepared electrolytes are calculated and found as follows: 13.4 × 10?6 °C?1, 13.6 × 10?6 °C?1and 15.3 × 10?6 °C?1 for LDC, ZDC and ZLDC, respectively, in the temperature range 150–1150 °C.  相似文献   

17.
Epoxy resin of 9,9′-bis-(3,5-dibromo-4-hydroxyphenyl) anthrone-10 (EANBr, EEW 490) was synthesized and was characterized by IR and 1HNMR . EANBr and EPK3251 cured resin (EANBrC) were characterized by DSC and TGA at 10°Cmin?1 under nitrogen atmosphere. Broad DSC endothermic transitions of EANBr (265.3 °C) and EANBrC (291.4 °C) are due to some physical change and further confirmed by no weight loss in their TG thermograms. EANBr and EANBrC are thermally stable up to 340 °C and 310 °C, respectively. EANBr has followed single step degradation kinetics, while EANBrC has followed two step degradation kinetics. EANBr followed apparently zero order kinetics, while EANBrC followed apparently second order (1.80) and first order (0.89) degradation kinetics, respectively. Ea and A values of EANBrC (299.7 kJmol?1 and 6.32?×?1020 s?1) were found higher than that of EANBr (201 kJmol?1 and 2.45?×?1013 s?1) due to more rigid nature of EANBrC. The ΔS* value of the first step degradation of EANBrC (146.3 JK?1 mol?1) was found much more than that of EANBr (4.6 JK?1 mol?1). Jute – EANBr composite (J-EANBr) was prepared by compression molding technique at 120 °C for 5 h and under 20 Bar pressure. The observed tensile strength, flexural strength, electric strength and volume resistivity of J-EANBr are 24.7 MPa, 19.0 MPa, 1.8 kVmm?1 and 3.5?×?1012 ohm cm, respectively. Water absorption in J-EANBr was carried out at 30 ± 2 °C against distilled water, 10% NaCl, 10% HCl, 10% HNO3, 10% H2SO4, 10% NaOH, and 10% KOH and also in boiling water. The equilibrium time and equilibrium water content for J-EANBr in different environments are 384–432 h; 12.7–15.2%, respectively. The observed equilibrium water content and diffusivity trends of J-EANBr are KOH>H2SO4>HCl>NaOH>H2O>NaCl and H2O>NaCl>NaOH>H2SO4>HCl>KOH, respectively. Good thermo-mechanical, electrical properties and excellent hydrolytic stability of J-EANBr may be useful for high temperature applications in diverse fields.  相似文献   

18.
A series of phthalonitrile end-capped sulfonated polyarylene ether nitriles are synthesized via K2CO3 mediated nucleophilic aromatic substitution reaction at various molar ratios. The as-prepared polymer structures are confirmed by 1H NMR and FTIR spectroscopy. The properties of membranes cast from the corresponding polymers are investigated with respect to their structures. The membranes exhibit good thermal and mechanical properties, low methanol permeability (0.01?×?10?6–0.58?×?10?6 cm2·s?1 at 20 °C), and high proton conductivity (0.021–0.088 S·cm?1 at 20 °C). The introduction of phthalonitrile is proved to increase intermolecular interaction, mainly contributing to the reduction in water uptake, swelling ratio, and methanol permeability. More importantly, its introduction does not decrease the proton conductivity, but there is a slight increase. Furthermore, the selectivity of SPEN-CN-50 can reach 4.11?×?105 S·s·cm?3, which is about nine times higher than that of Nafion 117. All the data show that the as-prepared membranes may be potential proton exchange membrane for DMFCs applications.  相似文献   

19.
A novel and sensitive electrochemical sensor based on the cone conformation of the supramolecule 25, 27-(3-thiopropoxy)-p-tert-butyl calix[4]arene has been developed for quantitative determination of polycyclic aromatic hydrocarbons (PAHs). The method works effectively by immobilizing calix[4]arenes on Fe3O4 magnetic nanoparticles. CdSe quantum dots were used as electrochemical labels. CdSe quantum dots (QDs) modified PAHs in competition with the sample PAHs were intercalated into calix[4]arenes supramolecules via a host–guest interaction through individual bowl-shaped calix[4]arenes. The stripping analysis of the cadmium dissolved from CdSe nanoparticles provided a sensitive method for the detection of PAHs in the samples. The signal decrease of the QDs was proportional to the increase in the concentration of the PAHs. Under optimal conditions, among the five PAHs, the square wave voltammetry (SWV) response of QDs decreased linearly for anthracene and naphthalene in the range of 2.1 × 10?7–1.4 × 10?5 and 1.5 × 10?6–2.5 × 10?5 M, respectively. The calculated detection limits (3δ) were 20.1 ng mL?1 for anthracene and 105.5 ng mL?1 for naphthalene.  相似文献   

20.
ABSTRACT

The kinetics of ion exchange of Zr/Sn(IV) phosphonate–phosphate hybrid ion exchange materials have been studied with several types of ions of specific interest to nuclear fuel recycling including Nd3+ at 4.5 and 43 mM and NpO2+ at 2.9 mM spanning multiple HNO3 concentrations. In most cases, the equilibrium was reached in less than 12 h. The ion exchange behavior followed that of pseudo first-order adsorption with rates ranging from 0.430–4.10 h?1 to 0.290–0.435 h?1 for Nd3+ and NpO2+, respectively. A separation with both Nd3+ and NpO2+ present was performed, resulting in separation factors of 1.9–12, 1.7–6.6, and 2.0–5.7 at 1 × 10?1, 1 × 10?2, and 1 × 10?3 M HNO3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号