首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, an electrochemical β-nicotinamide adenine dinucleotide (NADH) sensor based on a carbon paste electrode modified with nickel oxide nanoparticles (NiONPs) was developed. The key highlights of this work are ease of preparation of the NiONPs-modified carbon paste electrode (NiONPs/MCPE), and its high sensitivity to NADH. The electrochemical characterization of NiONPs/MCPEs was performed via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical oxidation response of NADH was investigated by differential pulse voltammetry and chronoamperometry. The results indicated that the electrocatalytic effects of NiONPs on the response current of NADH significantly facilitated the electron transfer and improved the performance of the biosensor. Compared to bare carbon paste electrode (BCPE), the oxidation potential was shifted toward more negative potentials and the oxidation current was increased remarkably. Under optimum conditions, NADH could be detected in the range from 1.0 × 10?4 to 1.0 mmol L?1 with lower detection limit (0.05 μmol L?1). The proposed NADH sensor demonstrated fast and reproducible response. Furthermore, an ethanol biosensor was prepared using NiONPs and NAD+-dependent alcohol dehydrogenase enzyme giving linear responses over the concentration range of 1.6 and 38 mmol L?1 of ethanol.  相似文献   

2.
A graphene quantum dots–gold nanoparticles–modified glassy carbon electrode was used to investigate the electrochemical behaviors of malachite green (MG). Cyclic voltammetry curves of MG at the modified electrode exhibited a pair of quasi-reversible adsorption-controlled redox peaks at 0.502 V (E pa) and 0.446 V (E pc) in a 0.05 mol L?1 H2SO4 solution. Under the optimal conditions, by using differential pulse voltammetry as the detection method, a linear relationship was obtained between the oxidation peak current and the MG concentration in the range of 4.0 × 10?7 to 1.0 × 10?5 mol L?1 with the detection limit as 1.0 × 10?7 mol L?1 (signal-to-noise ratio of 3). The modified electrode was applied in the determination of MG in fish samples, and the results were satisfactory with recoveries from 96.25 to 98.00 %. Furthermore, the modified electrode showed very good reproducibility and stability.  相似文献   

3.
A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20–100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1–12). The surface coverages and heterogeneous electron transfer rate constants (ks) of immobilized Mn-complex were approximately 1.58 × 10−10 mole cm−2 and 48.84 s−1. The modified electrode showed excellent electrocatalytic activity toward H2O2 reduction. Detection limit, sensitivity, linear concentration range and kcat for H2O2 were, 0.2 μM and 692 nA μM−1 cm−2, 1 μM to 1.5 mM and 7.96(±0.2) × 103 M−1 s−1, respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.  相似文献   

4.
Electrogenerated Chemiluminescence (ECL) involves applying a certain electric potential to a chemical reaction, resulting in the oxidation or reduction of the substance which reacts to produce light. We determined the amount of glucose by its reaction to glucose oxidase (GO X ) on the surface of the proposed modified electrode, which results hydrogen peroxide (H2O2) as side product. After that the reactions between luminol and H2O2 under oxidizing conditions generate dependent light which can be used to analyze. In the current article at first we proposed a convenient method to obtaining a self-assembly modified electrode. A nano based modified glassy carbon (GC) electrode (Glucose oxidase/Ag nanoparticles/cysteamine (CA)/p-aminobenzene sulfonic acid/GC electrode) was prepared, and the ECL behavior of luminol in the presence of glucose was examined. Compared to the bare GC electrode, the modified electrode incorporating glucose oxidase significantly enhanced the response of the ECL biosensor to glucose due to the enhanced specificity of the modified surface to enzymatic reaction, and the sensitivity of the luminol ECL reaction. Under optimal conditions, the electrode was established to respond linearly to glucose in the concentration range 5.0×10?7 to 8.0×10?3 mol/L, and the detection limit was established to be a glucose concentration of 4.0×10?8 mol/L.  相似文献   

5.
Ozone/hydrogen peroxide batch treatment was utilized to study the degradation of the steroidal hormone estrone (E1). The competition kinetics method was used to determine the rate constants of reaction for direct ozone and E1, and for hydroxyl radicals and E1 at three pH levels (4, 7, and 8.5), three different molar O3/H2O2 ratios (1:2, 2:1, and 4:1) and a temperature about 20°C. The average second-order rate constants for direct ozone-E1 reaction were determined as 6.2?×?103?±?3.2?×?103 M?1s?1, 9.4?×?105?±?2.7?×?105 M?1s?1, and 2.1?×?107?±?3.1?×?106 M?1s?1 at pH 4, 7, and 8.5, respectively. It was found that pH had the greatest influence on the reaction rate, whereas O3/H2O2 ratio was found to be slightly statistically significant. For the hydroxyl radical-E1 reaction, apparent rate constants ranged from 1.1?×?1010 M?1s?1 to 7.0?×?1010 M?1s?1 with an average value of 2.6?×?1010 M?1s?1. Overall, O3/H2O2 is shown to be an effective treatment for E1.  相似文献   

6.
The redox kinetics of VO2+/VO2 + and V3+/V2+ couples on a carbon paper (CP, HCP030 N, Shanghai Hesen, Ltd., China) electrode were investigated in terms of their standard rate constant (k 0) and reaction mechanism. The values determined for k 0 for VO2+ ?? VO2 + and V3+ ?? V2+ using the CP electrode are 1.0 × 10?3 and 1.1 × 10?3 cm s?1, respectively. The value of k 0 increases by one or two order(s) of magnitude compared with values obtained using electrodes composed of pyrolytic graphite and glassy carbon. The acceleration of the redox kinetics of vanadium ions is a result of the large surface area of the CP electrode. An inner-sphere mechanism for the reaction on the surface of the electrode is proposed. The kinetic features of vanadium redox reactions on the CP electrode reveal that CP is suitable for use as the electrodes in vanadium redox-flow batteries.  相似文献   

7.
Herein, a novel nanocomposite of binary ZnO–CoO nanoparticles loaded on the graphene nanosheets (ZnO–CoO/rGO) has been successfully constructed via a facile, economical and two–step process. The obtained ZnO–CoO/rGO hybrids with high electrical conductivity and abundant active sites, could be modified on a glassy carbon electrode to detect glucose and H2O2 multi–functionally. The fabricated biosensor exhibits wide linear range for glucose (10 μM to 11.205 mM) and H2O2 (25 μM to 11.1 mM), and their corresponding sensitivity are 168.7 μA mM?1 cm?2 and 183.3 μA mM?1 cm?2. The limits of detection are 1.3 μM and 0.44 μM for the oxidation of glucose and the reduction of H2O2, respectively. Furthermore, remarkable selectivity, long–term stability and outstanding reproducibility of the non–enzyme biosensor prove that ZnO–CoO/rGO hybrids are the promising candidate in practical applications.  相似文献   

8.
A novel biosensor based on electro-co-deposition of myoglobin (Mb), sodium alginate (SA), Fe3O4-graphene (Fe3O4-GR) composite on the carbon ionic liquid electrode (CILE) was fabricated using Nafion as the film forming material to improve the stability of protein immobilized on the electrode surface, and the modified electrode was abbreviated as Nafion/Mb-SA-Fe3O4-GR/CILE. FT-IR and UV–vis absorption spectra suggested that Mb could retain its native structure after being immobilized in the SA-Fe3O4-GR composite film. The electrochemical behavior of the modified electrode was studied by cyclic voltammetry, and a pair of symmetric redox peaks appeared in the cyclic voltammograms, indicating that direct electron transfer of Mb was realized on the modified electrode, which was ascribed to the good electrocatalytic capability of Fe3O4-GR composite, the good biocompatibility of SA and the synergistic effects of SA and Fe3O4-GR composite. The electrochemical parameters of the electron transfer number (n), the charge transfer coefficient (α) and the electron transfer rate constant (k s) were calculated as 0.982, 0.357 and 0.234 s?1, respectively. The modified electrode exhibited good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) with wide linear range from 1.4 to 119.4 mmol/L, low detection limit as 0.174 mmol/L (3σ), good stability and reproducibility.  相似文献   

9.
A novel organic molecule of 9H-carbazole-9-carbothioic methacrylic thioanhydride (CzCS2metac) was synthesized by incorporating CS2 and methacrylate groups into the carbazole monomer structure. CzCS2metac was characterized by FTIR, 1H-NMR and 13C-NMR spectroscopy. CzCS2metac was electropolymerized in 0.1 M tetraethylammonium tetrafluoroborate (TEABF4)/acetonitrile (CH3CN) on glassy carbon electrode (GCE). The characterization of the electrocoated P(CzCS2metac)/CFME thin film was studied by various techniques, such as cyclic voltammetry, scanning electron microscopy–energy-dispersive X-ray analysis and electrochemical impedance spectroscopy. The specific capacitance (C sp) of P(CzCS2metac)/MWCNT/GCE in the scan rate of 20 mV s?1 (C sp = 38.48 F g?1 from area formula, C sp = 38.52 F g?1 from charge formula) was increased ~15.66 and ~15.64 times in area and charge formulas compared to P(CzCS2metac)/GCE (C sp = 2.46 F g?1 from area and charge formulas). The same results were also obtained from Nyquist graphs. The specific capacitance value of composite film (C sp = 1.09 × 10?3 F) is ~15.66 times higher than the polymer film (C sp = 6.92 × 10?5 F). The composite film may be used as supercapacitor electrode material in energy storage devices.  相似文献   

10.
Nitrogen-doped carbon (CNx) nanotubes were synthesized by thermal decomposition of ferrocene/ethylenediamine mixture at 600–900 °C. The effect of the temperature on the growth and structure of CNx nanotubes was studied by transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. With increasing growth temperature, the total nitrogen content of CNx nanotubes was decreased from 8.93 to 6.01 at.%. The N configurations were changed from pyrrolic-N to quaternary-N when increasing the temperature. Examination of the catalytic activities of the nanotubes for oxygen reduction reaction by rotating disk electrode measurements and single-cell tests shows that the onset potential for oxygen reduction in 0.5 M H2SO4 of the most effective catalyst (CNx nanotubes synthesized at 900 °C) was 0.83 V versus the normal hydrogen electrode. A current density of 0.07 A cm?2 at 0.6 V was obtained in an H2/O2 proton-exchange membrane fuel cell at a cathode catalyst loading of 2 mg cm?2.  相似文献   

11.
Graphene, whose structure consists of a single layer of sp2-hybridized carbon atoms, provides an excellent platform for designing composite nanomaterials. In this study, we have demonstrated a facile process to synthesize graphene–multiwalled carbon nanotube (MWCNT) composite. The graphene–MWCNT composite material is endowed with a large electrochemical surface area and fast electron transfer properties in Fe(CN)63?/4? redox species. A graphene–MWCNT composite modified electrode exhibits good performance in terms of the electrocatalytic reduction of H2O2; a sensor constructed from such an electrode shows a good linear dependence on H2O2 concentration in the range of 2 × 10?5 to 2.1 × 10?3 mol L?1. The detection limit is estimated to be 9.4 × 10?6 mol L?1. This study provides a new kind of composite modified electrode for electrochemical sensors.  相似文献   

12.
This work reports on the electrochemical oxidation of oxytetracycline hydrochloride (OTCH) [(4S,4aS,5aS,6S,12aS)-4-dimethylamino-1,4,4a,5, 5a,6,11,12a-octahydro-3,6,10,12,12a-hexahydroxy-6-methyl-1,11-dioxonaphthacene-2-carboxamide] on a RuO2 electrode (DSA®) by cyclic voltammetry and electrolysis. The electrocatalytic efficiency of the electrode material was investigated as a function of different aqueous buffer solutions with pH values of 2.10 and 5.45 as supporting electrolytes. Spectrophotometric studies have shown that OTCH is stable in such solutions. The electrochemical degradation of OTCH is pseudo-first order at both pH values investigated with rate constants, k, of 9.9 × 10?5 s?1 (pH 2.10) and 1.9 × 10?4 s?1 (pH 5.45) at 21 ± 1 °C. Microbiological studies with Staphylococcus aureus ATCC 29213 have shown that OTCH lost antibacterial activity after 120 min of electrolysis at 50 mA cm?2.  相似文献   

13.
Three supported catalysts containing 20 wt% cobalt and 0.5 wt% rhenium were subjected to electron microscopy studies in their calcined state. The catalysts were prepared by incipient wetness impregnation of γ-Al2O3 supports of different pore characteristics with aqueous solutions of cobalt nitrate hexahydrate and perrhenic acid. The influence of the support on the Co3O4 crystallite size and distribution was studied by X-ray diffraction and electron microscopy. There was a positive correlation between the pore diameter of the support and the post calcination Co3O4 crystallite size. On all three γ-Al2O3 supports, Co3O4 was present as aggregates of many crystallites (20–270 nm in size). Cobalt oxide did not crystallise as independent crystallites, but as an interconnected network, with a roughly common crystallographic orientation, within the matrix pore structure. The internal variations in crystallite size between the catalysts were maintained after reduction. Fischer–Tropsch synthesis was carried out in a fixed-bed reactor at industrial conditions (T = 483 K, P = 20 bar, H2/CO = 2.1). Although the cobalt-time yields varied significantly (4.6–6.7 × 10?3 mol CO/mol Co s), the site-time yields were constant (63–68 × 10?3 s?1) for the three samples. The C5+ selectivity could not be correlated to the cobalt oxide aggregate size and is more likely related to the cobalt particle size and chemical properties of the γ-Al2O3 support.  相似文献   

14.
NiO(8 %)/Ni,H-ZSM-5 + Al2O3 (1:1) catalysts differing in metal-support interactions, which influenced the metal-to-acid ratios, were examined. The interactions were changed by modifying the method of zeolite and aluminium hydroxide combining and the method of Ni incorporation. The catalysts were characterised by ICP, XRD, N2 sorption, SEM, TEM, NH3-TPD, Py-IR, TPR, H2 chemisorption and XPS. The effect of metal-support interactions was determined during n-C6 conversion in a continuous system at H2:CH = 7:1 Nm3/m3, 0.1 MPa and LHSV = 1 h?1. It was found that over the catalysts with weaker Ni–alumina interactions (n Ni_a/n, 3.2 × 10?2 and 4.8 × 10?2), selectivity to isomerisation products was by 10–35 % higher, and selectivity to high boiling hydrocarbons by 10–30 % lower than over the catalysts with stronger Ni-support interactions (n Ni_a/n, 1.2 × 10?2 and 1.8 × 10?2).  相似文献   

15.
We have developed a polyaniline/carboxy-functionalized multiwalled carbon nanotube (PAn/MWCNTCOOH) nanocomposite by blending the emeraldine base form of polyaniline (PAn) and carboxy-functionalized multiwalled carbon nanotubes (MWCNT) in dried dimethyl sulfoxide (DMSO) at room temperature. The conductivity of the resulting PAn/MWCNTCOOH was 3.6 × 10−3 S cm−1, mainly as a result of the protonation of the PAn with the carboxyl group and the radical cations of the MWCNT fragments. Horseradish peroxidase (HRP) was immobilized within the PAn/MWCNTCOOH nanocomposite modified Au (PAn/MWCNTCOOH/Au) electrode to form HRP/PAn/MWCNTCOOH/Au for use as a hydrogen peroxide (H2O2) sensor. The adsorption between the negatively charged PAn/MWCNTCOOH nanocomposite and the positively charged HRP resulted in a very good sensitivity to H2O2 and an increased electrochemically catalytical current during cyclic voltammetry. The HRP/PAn/MWCNTCOOH/Au electrode exhibited a broad linear response range for H2O2 concentrations (86 μM–10 mM). This sensor exhibited good sensitivity (194.9 μA mM−1 cm−2), a fast response time (2.9 s), and good reproducibility and stability at an applied potential of −0.35 V. The construction of the enzymatic sensor demonstrated the potential application of PAn/MWCNTCOOH nanocomposites for the detection of H2O2 with high performance and excellent stability.  相似文献   

16.
Two types of oxide nanosheet-based materials, H3O+-form regularly stacked manganese oxide nanosheets (H3O+-RG(Mn)) and H3O+-form randomly restacked manganese oxide nanosheets (H3O+-RE(Mn)) were synthesized by soft chemical methods, and their oxygen reduction reaction (ORR) activities were examined by cyclic voltammetry (CV) and semi-steady-state voltammetry (SSV) with a rotating ring-disc electrode at 70 °C in 0.1 M KOH. Both samples showed high onset potentials (E on) of the ORR current and high efficiencies (Eff 4) of the 4-electron reduction of oxygen, and E on and Eff 4 values were improved by electrochemical oxidation up to 1.2 V (vs. reversible hydrogen electrode) in the CV measurement prior to the SSV measurement. As a result, the nanosheet-based samples exhibited higher ORR activities than the starting materials, K+-form layered manganese oxide K0.5MnO2 (K+-RG(Mn)) and Mn2O3, and a well-known ORR catalyst, MnO2. The H3O+-RE(Mn) sample electrochemically oxidized up to 1.2 V showed the highest ORR activity, E on = 0.97 V and Eff 4 = 99%, which were comparable to those of a conventional 20 mass% Pt/C catalyst. The comparison of their ORR activities, BET surface areas and X-ray photoelectron spectra suggests that the enhancement of the ORR activity is attributed to an increase in the numbers of the ORR active sites and a large amount of H2O in the interlayers and on the surface of the nanosheets because of rapid of H2O-supply enough for ORR in alkaline solution.  相似文献   

17.
A novel and sensitive electrochemical sensor based on the cone conformation of the supramolecule 25, 27-(3-thiopropoxy)-p-tert-butyl calix[4]arene has been developed for quantitative determination of polycyclic aromatic hydrocarbons (PAHs). The method works effectively by immobilizing calix[4]arenes on Fe3O4 magnetic nanoparticles. CdSe quantum dots were used as electrochemical labels. CdSe quantum dots (QDs) modified PAHs in competition with the sample PAHs were intercalated into calix[4]arenes supramolecules via a host–guest interaction through individual bowl-shaped calix[4]arenes. The stripping analysis of the cadmium dissolved from CdSe nanoparticles provided a sensitive method for the detection of PAHs in the samples. The signal decrease of the QDs was proportional to the increase in the concentration of the PAHs. Under optimal conditions, among the five PAHs, the square wave voltammetry (SWV) response of QDs decreased linearly for anthracene and naphthalene in the range of 2.1 × 10?7–1.4 × 10?5 and 1.5 × 10?6–2.5 × 10?5 M, respectively. The calculated detection limits (3δ) were 20.1 ng mL?1 for anthracene and 105.5 ng mL?1 for naphthalene.  相似文献   

18.
Electrochemical oxidation and reduction of H2O2 on Ag were studied in alkaline solution of 10?3?0.3 M H2O2 and 2 × 10?3 ?1.0 M KOH under N2 bubbling. Steady i-φ curves obtained by a cyclic potential sweep method in a potential range where no electrode oxidation takes place, lead to the following results: (1) icd (A cm?2) (cathodic limiting current density) = 1.0 × [H2O2]1.0T (M), (2) i1d (A cm?2 (anodic limiting one) = icd ([KOH] ? [H2O2]T) or 1.0 × [KOH] < [H2O2]T), (3) φm (V) (mixed potential) = 0.126-0.060 log [KOH]1.0 and (4) (?φ/?i)φ=φm (Ωcm2) (reaction resistance at φ = φm) = 0.057 × [H2O2]?1.0T (M?1), where [H2O2]T designates a total H2O2 concentration and the others have their usual meanings.The above results are explained by the following mechanism; HO?2 formed by the reversible chemical reaction, H2O2 + OH ? HO?2 + H2O, is oxidised in anodic reaction by two steps: HO?2
HO2 (a) + e? and HO2(a) + OH? → O2 + H2O + e?, whereas in cathodic reaction, H2O2 is reduced by H2O2 + e?
OH(a) + OH?, OH(a) + e? → OH?. Here,
designates a rate determining step,Catalytic decomposition of H2O2 on the electrode is also discussed.  相似文献   

19.
Electrodeposition and dissolution of zinc in sulfuric acid were studied as the negative electrode reactions in acidic zinc-based redox flow batteries. The zinc deposition and dissolution is a quasi-reversible reaction with a zinc ion diffusion coefficient of 4.6 × 10?6 cm2 s?1 obtained. The increase of acid concentration facilitates an improvement in the kinetics of zinc electrodeposition–dissolution process. But too high acid concentration would result in a significant decrease in charge efficiency. The performance of the zinc electrode in a three-electrode system with magnetic stirring was also studied as a function of Zn(II) ion concentration, sulfuric acid concentration, current density, and the addition of additives in 1 M H2SO4 medium. The optimum electrolyte composition is suggested at high zinc(II) concentration (1.25 M) and moderate sulfuric acid concentration (1.0–1.5 M) at a current density range of 20–30 mA cm?2. Whether in acid-free solution or in sulfuric acid solution with or without additives, no dendrite formation is observed after zinc electrodeposition for 1 h at 20 mA cm?2. The energy efficiency is improved from 77 % in the absence of additives in 1 M H2SO4 medium to over 80 % upon the addition of indium oxide or SLS–Sb(III) combined additive as hydrogen suppressants.  相似文献   

20.
Fe2-xYxW3O12 powder has been synthesized by the citrate sol-gel process. A model was proposed to calculate the concentration of species in a citric solution. The calculated results could provide valuable information for determining the optimal molar ratio of cation to citric acid and pH value of solution for Fe2-xYxW3O12 preparation. The predicted parameters derived from this model are in good agreement with the experimental results. The prepared gel and the Fe2-xYxW3O12 powder were characterized by X-ray diffraction (XRD) and differential thermal analysis-thermogravimetry (DTA-TG). The results show that it is very difficult to obtain pure Fe2W3O12 powder by the citrate sol-gel process in the temperature range 500°–1000°C, however, Y2W3O12 can easily be prepared even at 500°C. Y2W3O12 annealed at 1000°C for 10 h is favorable for absorbing moisture in air to form Y2W3O12·3.3H2O. The thermal expansion coefficients of Y2W3O12·3.3H2O are: αa = ? 8.01 × 10?6°C?1, αb = ? 2.51 × 10?7°C?1, and αc = ? 5.55 × 10?6°C?1 in 473–1173 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号