首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
提出了一种新型下行管入口结构. 这种结构设有雾化空间,能够提供适宜的床层密度,剂油初始接触采用逆流、错流方式. 在下行管入口处,颗粒浓度呈管中心高、边壁低的分布;随着颗粒向下运动,中心区颗粒浓度逐渐降低,边壁区颗粒浓度升高. 在下行管完全发展段,颗粒浓度径向分布形式不再随轴向位置发生变化.  相似文献   

2.
采用光纤探头针对7个不同高度的预热器换热管截面做粉料轴向相对浓度分布测试.研究发现,沿换热管下料点断面向上,同一径向位置的颗粒浓度总是不断减小.换热管边壁区颗粒浓度沿轴向位置升高而减小远比中心区域迅速,当表观气速较小或物料负荷率较高时此现象尤为明显.随换热管截面高度的增高,气固两相流场发展逐步充分而趋于稳定,两者的相对运动速度逐渐变小.气流沿轴向的湍动逐步减弱,中心区和边壁区的颗粒浓度的差异逐渐缓和.改变操作条件对同一轴向断面边壁区颗粒浓度的影响较大,对中心区颗粒浓度的影响较小.增大系统的固气比,轴向不均匀性增大,物料下冲高度增大.  相似文献   

3.
在368mm×368mm方形气固流化床中采用FCC颗粒研究了局部颗粒浓度分布的基本行为,实验测试了不同高度床层截面上的局部颗粒浓度分布。结果表明:局部颗粒浓度在床层中心最小,向外逐渐增加,边壁处颗粒浓度急剧增加到最大;表观气速(Ug)较低时,床层截面内不同方向上颗粒浓度分布的差异较大;随表观气速增大,床层截面内不同方向上的颗粒浓度分布规律趋于一致。局部流动结构的转变首先发生于床层中心,然后再向边壁逐渐扩展。颗粒浓度概率密度分布曲线(PDD)表明在湍动流态化下稳定的两相流动结构已被打破。  相似文献   

4.
采用压力巡检仪和光纤测量仪,对直径300 mm的快速流化床反应器内气固两相流动特性进行了研究,考察了操作条件对快速床轴、径向催化剂颗粒浓度、颗粒速度、筛分分布等的影响. 结果表明,当操作气速提高到2.0~2.6 m/s,相应的催化剂循环强度在60~160 kg/(m2×s),床层密度可保持在50~650 kg/m3;催化剂颗粒浓度在径向上呈中心低、边壁高的不均匀分布,轴向上各径向位置在颗粒加速区逐渐降低、在充分发展区趋于稳定、随表观气速增大或催化剂循环强度减小而减小,且径向均匀性变好,在r/R<0.7的中心区域趋于一致;颗粒速度在径向上呈中心高、边壁低的抛物线形分布,且随操作气速增大或催化剂循环强度增大而更加明显.  相似文献   

5.
根据文中提出的颗粒局部及整体返混比,对组合式提升管入口区颗粒的返混特性进行了研究,结果表明,在S型颗粒浓度轴向分布时,颗粒在床层底部的返混较小,在顶部的返混较大;而在指数形颗粒浓度轴向分布时,颗粒则在床层底部的返混较大,在顶部的返混较小.在不同操作条件下,床内颗粒具有不同的局部返混特性,在气速较高时,颗粒在床层中心的返混较少,在床层边壁的返混较多;在气速较低时,在床层顶部,颗粒在床层中心的返混较少,在床层边壁的返混较多,而在床层底部,颗粒则在床层中心和边壁处的返混较多,在床层中部的返混较少.  相似文献   

6.
大型下行式循环流化床反应器颗粒浓度分布研究   总被引:2,自引:2,他引:2  
采用双光路光纤密度探头研究了内径418mm,高18米大型下行式循环流化床(其中下行床部分长度6.5m)反应器中的颗粒浓度分布,结果表明大直径下行床中颗粒浓度沿径向呈现中心均匀,近壁处存在高浓环形区的分布,这类似于小直径反应器中的结果,随着反应器直径的增加,颗粒浓度分布最大值的径向位置向边壁方向移动,即:当下行床放大时,中心颗粒浓度均匀分布区的面积占整个床层截面积的比例增大,在一种特殊设计的下行床边壁结构中测量了颗粒浓度沿径向的分布,实验结果说明边壁效应对下行床近壁区颗粒浓环的形成起到了重要作用,研究结果将有助于了解下行床反应的放大特性。  相似文献   

7.
根据气固两相流在预热器输送床换热管冷态模型内的运动规律,设计开发了三种不同结构参数的分散装置.采用光纤浓度探头针PV-4和高速摄影仪,对装有三种散料装置的输送床换热管冷态模型内的物料运动加速段轴向方向的4个截面,进行了物料运动状态和径向浓度分布规律的试验研究,研究发现:在加速段区域,物料同气流间存在较大的相对运动速度,且湍流强度大,空间浓度变化最明显.当物料运动到加速区域上部,浓度分布呈现出径向中心区域低而边壁高的不均匀分布规律,换热管中心区的颗粒浓度分布曲线较平坦,由中心向边壁靠近,物料浓度单调递增,且近壁处分布曲线变陡.三种散料装置均改善了物料在换热管内部的冲料现象,物料空间浓度分布更加均匀,通过综合对比,发现2#散料装置的分散效果最为理想.  相似文献   

8.
气固循环床提升管内的局部颗粒浓度及流动发展   总被引:11,自引:0,他引:11  
采用反射式光纤浓度探头对f100mm×15.1m循环床提升管8个轴向截面上11个径向位置的局部颗粒浓度进行了测量, 分析研究了颗粒浓度径向分布的不均匀性及其沿轴向的发展变化。结果表明:提升管内气固两相流的发展并不同步,而是一个由核心区向边壁区逐渐扩展,并最终达到总体充分发展的过程,该过程主要受边壁区发展过程所控制;相对于核心区,边壁区的发展不仅显著缓慢,而且受操作条件的影响也较显著。实验还发现:在颗粒加速段,无因次颗粒浓度的径向分布不具有相似性,不仅与径向位置有关,而且还与床层截面高度有关。  相似文献   

9.
煤炭分级利用是煤炭高效低碳利用的主要途径之一,提出一种同时制备热解气和合成气的分级气流床气化炉,炉体上部为煤热解室,下部为煤焦气化室。采用PV6M颗粒测速仪对气化炉内固体颗粒的速度和浓度分布进行测量,并运用CFD软件对气化炉内气固两相流场进行模拟。结果表明,在射流发展区域与射流碰撞后的折射流发展区域,颗粒速度较高;边壁区域颗粒速度较低且出现回流现象。在惯性和气流曳力作用下,热解室内大部分颗粒自流进入气化室。热解室上部径向颗粒浓度中心高边壁低;气化室下部径向颗粒浓度中心低边壁高。热解室与气化室进气量比、喷嘴角度及颗粒直径等对气化炉出口颗粒流出量分配有重要的影响。热解室进气量增大,颗粒从热解室出口流出占比先减小后增大;热解喷嘴偏转角与颗粒Stokes数增大,颗粒从热解室出口流出占比减小。  相似文献   

10.
煤炭分级利用是煤炭高效低碳利用的主要途径之一,提出一种同时制备热解气和合成气的分级气流床气化炉,炉体上部为煤热解室,下部为煤焦气化室。采用PV6M颗粒测速仪对气化炉内固体颗粒的速度和浓度分布进行测量,并运用CFD软件对气化炉内气固两相流场进行模拟。结果表明,在射流发展区域与射流碰撞后的折射流发展区域,颗粒速度较高;边壁区域颗粒速度较低且出现回流现象。在惯性和气流曳力作用下,热解室内大部分颗粒自流进入气化室。热解室上部径向颗粒浓度中心高边壁低;气化室下部径向颗粒浓度中心低边壁高。热解室与气化室进气量比、喷嘴角度及颗粒直径等对气化炉出口颗粒流出量分配有重要的影响。热解室进气量增大,颗粒从热解室出口流出占比先减小后增大;热解喷嘴偏转角与颗粒Stokes数增大,颗粒从热解室出口流出占比减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号