共查询到16条相似文献,搜索用时 0 毫秒
1.
Maps of burned area have been obtained from an automatic algorithm applied to a multitemporal series of Landsat TM/ETM+ images in two Mediterranean sites. The proposed algorithm is based on two phases: the first one intends to detect the more severely burned areas and minimize commission errors. The second phase improves burned patches delimitation using a hybrid contextual algorithm based on logistic regression analysis, and tries to minimize omission errors. The algorithm was calibrated using six study sites and it was validated for the whole territory of Portugal (89,000 km2) and for Southern California (70,000 km2). In the validation exercise, 65 TM/ETM+ scenes for Portugal and 35 for California were used, all from the 2003 fire season. A good agreement with the official burned area perimeters was shown, with kappa values close to 0.85 and low omission and commission errors (< 16.5%). The proposed algorithm could be operationally used for historical mapping of burned areas from Landsat images, as well as from future medium resolution sensors, providing they acquire images in two bands of the Short Wave Infrared (1.5-2.2 μm). 相似文献
2.
Our study compares data on burn severity collected from multi-temporal Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) with similar data from the Enhanced Thematic Mapper Plus (ETM+) using the differenced Normalized Burn Ratio (dNBR). Two AVIRIS and ETM+ data acquisitions recorded surface conditions immediately before the Hoover Fire began to spread rapidly and again the following year. Data were validated with 63 field plots using the Composite Burn Index (CBI). The relationship between spectral channels and burn severity was examined by comparing pre- and post-fire datasets. Based on the high burn severity comparison, AVIRIS channels 47 and 60 at wavelengths of 788 and 913 nm showed the greatest negative response to fire. Post-fire reflectance values decreased the most on average at those wavelengths, while channel 210 at 2370 nm showed the greatest positive response on average. Fire increased reflectance the most at that wavelength over the entire measured spectral range. Furthermore, channel 210 at 2370 nm exhibited the greatest variation in spectral response, suggesting potentially high information content for fire severity. Based on general remote sensing principles and the logic of variable spectral responses to fire, dNBR from both sensors should produce useful results in quantifying burn severity. The results verify the band-response relationships to burn severity as seen with ETM+ data and confirm the relationships by way of a distinctly different sensor system. 相似文献
3.
Jahangir Mohammadi 《Remote sensing of environment》2010,114(7):1504-1512
Lack of data often limits understanding and management of biodiversity in forested areas. Remote sensing imagery has considerable potential to aid in the monitoring and prediction of biodiversity across many spatial and temporal scales. In this paper, we explored the possibility of defining relationships between species diversity indices and Landsat ETM+ reflectance values for Hyrcanian forests in Golestan province of Iran. We used the COST model for atmospheric correction of the imagery. Linear regression models were implemented to predict measures of biodiversity (species richness and reciprocal of Simpson indices) using various combinations of Landsat spectral data. Species richness was modeled using the band set ETM5, ETM7, DVI, wetness and variances of ETM1, ETM2 and ETM5 (adjusted R2 = 0.59, RMSE = 1.51). Reciprocal of Simpson index was modeled using the band set NDVI, brightness, greenness, variances of ETM2, ETM5 and ETM7 (adjusted R2 = 0.459 RMSE = 1.15). The results demonstrated that spectral reflectance from Landsat can be used to effectively model tree species diversity. Predictive map derived from the presented methodology can help evaluate spatial aspects and monitor tree species diversity of the studied forest. The methodology also facilitates the evaluation of forest management and conservation strategies in northern Iran. 相似文献
4.
长江三峡库区Landsat7 ETM+数据的处理方法探讨 总被引:2,自引:0,他引:2
Landsat7 ETM+是陆地卫星系列的最新数据,其突出优势在于提高了多光谱波段的空间分辨率,增加了一个分辨率为15 m的全色波段,丰富了数据的信息量。选取长江三峡库区的两景ETM+原始数据,基于不同的地学遥感应用要求,试验性地研究了Landsat7 ETM+新型数据的数字处理方法,并比较了这些处理方法的应用效果。结果表明,选择适当的数字方法对新型Landsat7ETM+遥感数据进行处理,能够快速、有效地获得同时具备较高的光谱分辨率和空间分辨率的遥感数字图像,显示出较好的应用优势。 相似文献
5.
Using lidar and effective LAI data to evaluate IKONOS and Landsat 7 ETM+ vegetation cover estimates in a ponderosa pine forest 总被引:1,自引:0,他引:1
Structural and functional analyses of ecosystems benefit when high accuracy vegetation coverages can be derived over large areas. In this study, we utilize IKONOS, Landsat 7 ETM+, and airborne scanning light detection and ranging (lidar) to quantify coniferous forest and understory grass coverages in a ponderosa pine (Pinus ponderosa) dominated ecosystem in the Black Hills of South Dakota. Linear spectral mixture analyses of IKONOS and ETM+ data were used to isolate spectral endmembers (bare soil, understory grass, and tree/shade) and calculate their subpixel fractional coverages. We then compared these endmember cover estimates to similar cover estimates derived from lidar data and field measures. The IKONOS-derived tree/shade fraction was significantly correlated with the field-measured canopy effective leaf area index (LAIe) (r2=0.55, p<0.001) and with the lidar-derived estimate of tree occurrence (r2=0.79, p<0.001). The enhanced vegetation index (EVI) calculated from IKONOS imagery showed a negative correlation with the field measured tree canopy effective LAI and lidar tree cover response (r2=0.30, r=−0.55 and r2=0.41, r=−0.64, respectively; p<0.001) and further analyses indicate a strong linear relationship between EVI and the IKONOS-derived grass fraction (r2=0.99, p<0.001). We also found that using EVI resulted in better agreement with the subpixel vegetation fractions in this ecosystem than using normalized difference of vegetation index (NDVI). Coarsening the IKONOS data to 30 m resolution imagery revealed a stronger relationship with lidar tree measures (r2=0.77, p<0.001) than at 4 m resolution (r2=0.58, p<0.001). Unmixed tree/shade fractions derived from 30 m resolution ETM+ imagery also showed a significant correlation with the lidar data (r2=0.66, p<0.001). These results demonstrate the power of using high resolution lidar data to validate spectral unmixing results of satellite imagery, and indicate that IKONOS data and Landsat 7 ETM+ data both can serve to make the important distinction between tree/shade coverage and exposed understory grass coverage during peak summertime greenness in a ponderosa pine forest ecosystem. 相似文献
6.
In this study, the consistency of systematic retrievals of surface reflectance and leaf area index was assessed using overlap regions in adjacent Landsat Enhanced Thematic Mapper-Plus (ETM+) scenes. Adjacent scenes were acquired within 7-25 days apart to minimize variations in the land surface reflectance between acquisition dates. Each Landsat ETM+ scene was independently geo-referenced and atmospherically corrected using a variety of standard approaches. Leaf area index (LAI) models were then applied to the surface reflectance data and the difference in LAI between overlapping scenes was evaluated. The results from this analysis show that systematic LAI retrieval from Landsat ETM+ imagery using a baseline atmospheric correction approach that assumes a constant aerosol optical depth equal to 0.06 is consistent to within ±0.61 LAI units. The average absolute difference in LAI retrieval over all 10 image pairs was 26% for a mean LAI of 2.05 and the maximum absolute difference over any one pair was 61% for a mean LAI of 1.13. When no atmospheric correction was performed on the data, the consistency in LAI retrieval was improved by 1%. When a scene-based dense, dark vegetation atmospheric correction algorithm was used, the LAI retrieval differences increased to 28% for a mean LAI of 2.32. This implies that a scene-based atmospheric correction procedure may improve the absolute accuracy of LAI retrieval without having a major impact on retrieval consistency. Such consistency trials provide insight into the current limits concerning surface reflectance and LAI retrieval from fine spatial resolution remote sensing imagery with respect to the variability in clear-sky atmospheric conditions. 相似文献
7.
植被净第一生产力(NPP)作为反映植被固碳能力的重要指标,在全球CO2浓度上升的背景下,成为研究全球及区域生态系统对气候环境变化响应的热点之一。基于Landsat TM/ETM+遥感影像数据,采用改进的CASA模型,估算得到武汉市2001~2010年空间分辨率为30m的冬季NPP,并对其进行时空变化分析。研究结果表明:武汉市过去10a冬季平均NPP为8.55gC/m2·m。2001~2010年武汉市冬季NPP整体呈现波动上升的趋势,各区域具有不同的增长速率,其中以江夏区最快,而各植被类型中灌木林具有最快的增长速率和最高的平均NPP。武汉市冬季NPP均呈现从三环区域向四周增大的空间分布特征,过去10a武汉市冬季NPP最高的区域由黄陂区转移到了江夏区。 相似文献
8.
A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery 总被引:1,自引:0,他引:1
Charles Walthall Wayne Dulaney John Norman Shunlin Liang 《Remote sensing of environment》2004,92(4):465-474
Plant foliage density expressed as leaf area index (LAI) is used in many ecological, meteorological, and agronomic models, and as a means of quantifying crop spatial variability for precision farming. LAI retrieval using spectral vegetation indices (SVI) from optical remotely sensed data usually requires site-specific calibration values from the surface or the use of within-scene image information without surface calibrations to invert radiative transfer models. An evaluation of LAI retrieval methods was conducted using (1) empirical methods employing the normalized difference vegetation index (NDVI) and a new SVI that uses green wavelength reflectance, (2) a scaled NDVI approach that uses no calibration measurements, and (3) a hybrid approach that uses a neural network (NN) and a radiative transfer model without site-specific calibration measurements. While research has shown that under a variety of conditions NDVI is not optimal for LAI retrieval, its continued use for remote sensing applications and in analysis seeking to develop improved parameter retrieval algorithms based on NDVI suggests its value as a “benchmark” or standard against which other methods can be compared. Landsat-7 ETM+ data for July 1 and July 8 from the Soil Moisture EXperiment 2002 (SMEX02) field campaign in the Walnut Creek watershed south of Ames, IA, were used for the analysis. Sun photometer data collected from a site within the watershed were used to atmospherically correct the imagery to surface reflectance. LAI validation measurements of corn and soybeans were collected close to the dates of the Landsat-7 overpasses. Comparable results were obtained with the empirical SVI methods and the scaled SVI method within each date. The hybrid method, although promising, did not account for as much of the variability as the SVI methods. Higher atmospheric optical depths for July 8 leading to surface reflectance errors are believed to have resulted in overall poorer performance for this date. Use of SVIs employing green wavelengths, improved method for the definition of image minimum and maximum clusters used by the scaled NDVI method, and further development of a soil reflectance index used by the hybrid NN approach are warranted. More importantly, the results demonstrate that reasonable LAI estimates are possible using optical remote sensing methods without in situ, site-specific calibration measurements. 相似文献
9.
Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery 总被引:2,自引:0,他引:2
Relatively little is known about the disturbance ecology of large wildfires in the southern Appalachians. The occurrence of a 4000-ha wildfire in the Linville Gorge Wilderness area in western North Carolina has provided a rare opportunity to study a large fire with a range of severities. The objectives of this study were to 1) assess the potential for using multi-temporal Landsat imagery to map fire severity in the southern Appalachians, 2) examine the influences of topography and forest community type on the spatial pattern of fire severity; and 3) examine the relationship between predicted fire severity and changes in species richness. A non-linear regression equation predicted a field-based composite burn index (CBI) as a function of change in the Normalized Burn Ratio (dNBR) with an R2 of 0.71. Fire severity was highest on drier landforms located on upper hillslopes, ridges, and on southwest aspects, and was higher in pine communities than in other forest types. Predicted CBI was positively correlated with changes in species richness and with the post-fire cover of pine seedlings (Pinus virginiana, P. rigida, and P. pungens), suggesting that burn severity maps can be used to predict community-level fire effects across large landscapes. Despite the relatively large size of this fire for the southern Appalachians, severity was strongly linked to topographic variability and pre-fire vegetation, and spatial variation in fire severity was correlated with changes in species richness. Thus, the Linville Gorge fire appears to have generally reinforced the ecological constraints imposed by underlying environmental gradients. 相似文献
10.
Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data 总被引:1,自引:0,他引:1
Forest disturbances influence many landscape processes, including changes in microclimate, hydrology, and soil erosion. We analyzed the spectral response and temporal progress of two types of disturbances of spruce forest (bark beetle outbreak and clear-cuts) in the central part of Šumava Mountains at the border between the Czech Republic and Germany, Central Europe. The bark beetle (Ips typographus [L.]) outbreak in this region in the last 20 years resulted in regional-scale spruce forest decay. Clear-cutting was done here to prevent further bark-beetle propagation in the buffer zones.The aim of the study is to identify the differences in spectral response between the two types of forest disturbances and their temporal dynamics. General trends were analyzed throughout the study area, with sampled disturbance areas selected to assess the relationship between field vegetation data and their spectral response. Thirteen Landsat TM/ETM+ scenes from 1985 to 2007 were used for the assessment. The following spectral indices were estimated: NDMI, Tasseled Cap (Brightness, Greenness, Wetness), DI, and DI′. The DI′, Wetness, and Brightness indices show the highest sensitivity to forest disturbance for both disturbance types (clear-cuts and bark beetle outbreak). The multitemporal analysis distinguished three different stages of development. The highest spectral differences between the clear-cuts and the bark beetle disturbances were found in the period between 1996 and 2004 with increased levels of forest disturbance (repeated measures ANOVA, Scheffé post hoc test; p ≤ 0.05). Clear-cut disturbance resulted in significantly higher spectral differences from the original forest and occurred as a more discrete event in comparison to bark beetle outbreak. 相似文献
11.
Warren B Cohen Thomas K MaierspergerZhiqiang Yang Stith T GowerDavid P Turner William D RittsMercedes Berterretche Steven W Running 《Remote sensing of environment》2003,88(3):233-255
The MODIS land science team produces a number of standard products, including land cover and leaf area index (LAI). Critical to the success of MODIS and other sensor products is an independent evaluation of product quality. In that context, we describe a study using field data and Landsat ETM+ to map land cover and LAI at four 49-km2 sites in North America containing agricultural cropland (AGRO), prairie grassland (KONZ), boreal needleleaf forest, and temperate mixed forest. The purpose was to: (1) develop accurate maps of land cover, based on the MODIS IGBP (International Geosphere-Biosphere Programme) land cover classification scheme; (2) derive continuous surfaces of LAI that capture the mean and variability of the LAI field measurements; and (3) conduct initial MODIS validation exercises to assess the quality of early (i.e., provisional) MODIS products. ETM+ land cover maps varied in overall accuracy from 81% to 95%. The boreal forest was the most spatially complex, had the greatest number of classes, and the lowest accuracy. The intensive agricultural cropland had the simplest spatial structure, the least number of classes, and the highest overall accuracy. At each site, mapped LAI patterns generally followed patterns of land cover across the site. Predicted versus observed LAI indicated a high degree of correspondence between field-based measures and ETM+ predictions of LAI. Direct comparisons of ETM+ land cover maps with Collection 3 MODIS cover maps revealed several important distinctions and similarities. One obvious difference was associated with image/map resolution. ETM+ captured much of the spatial complexity of land cover at the sites. In contrast, the relatively coarse resolution of MODIS did not allow for that level of spatial detail. Over the extent of all sites, the greatest difference was an overprediction by MODIS of evergreen needleleaf forest cover at the boreal forest site, which consisted largely of open shrubland, woody savanna, and savanna. At the agricultural, temperate mixed forest, and prairie grassland sites, ETM+ and MODIS cover estimates were similar. Collection 3 MODIS-based LAI estimates were considerably higher (up to 4 m2 m−2) than those based on ETM+ LAI at each site. There are numerous probable reasons for this, the most important being the algorithms' sensitivity to MODIS reflectance calibration, its use of a prelaunch AVHRR-based land cover map, and its apparent reliance on mainly red and near-IR reflectance. Samples of Collection 4 LAI products were examined and found to consist of significantly improved LAI predictions for KONZ, and to some extent for AGRO, but not for the other two sites. In this study, we demonstrate that MODIS reflectance data are highly correlated with LAI across three study sites, with relationships increasing in strength from 500 to 1000 m spatial resolution, when shortwave-infrared bands are included. 相似文献
12.
利用5对同日过境的HJ-1A/B CCD和Landsat TM/ETM+影像对,研究了二者植被指数(NDVI,SAVI,EVI)之间的定量关系。选用其中的3对影像对作为实验影像,通过对均匀同质实验区对应的植被指数进行回归分析求出二者之间的转换方程,用未参与实验的2对影像对来验证所求转换方程的有效性,并对二者植被指数之间的差异进行了分析。结果表明:两种传感器对应的植被指数之间存在极显著的线性正相关关系,所求的转换方程具有较高的精度,可以利用转换方程将两种传感器的植被指数进行互为转换,有利于二者植被监测结果的互为补充,而两种传感器在光谱响应函数上的不同造成了二者植被指数间存在差异。 相似文献
13.
Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery 总被引:25,自引:0,他引:25
This paper compares the normalized difference vegetation index (NDVI) and percent impervious surface as indicators of surface urban heat island effects in Landsat imagery by investigating the relationships between the land surface temperature (LST), percent impervious surface area (%ISA), and the NDVI. Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data were used to estimate the LST from four different seasons for the Twin Cities, Minnesota, metropolitan area. A map of percent impervious surface with a standard error of 7.95% was generated using a normalized spectral mixture analysis of July 2002 Landsat TM imagery. Our analysis indicates there is a strong linear relationship between LST and percent impervious surface for all seasons, whereas the relationship between LST and NDVI is much less strong and varies by season. This result suggests percent impervious surface provides a complementary metric to the traditionally applied NDVI for analyzing LST quantitatively over the seasons for surface urban heat island studies using thermal infrared remote sensing in an urbanized environment. 相似文献
14.
This work presents a new algorithm designed to detect clouds in satellite visible and infrared (IR) imagery of ice sheets. The approach identifies possible cloud pixels through the use of the normalized difference snow index (NDSI). Possible cloud pixels are grown into regions and edges are determined. Possible cloud edges are then matched with possible cloud shadow regions using knowledge of the solar illumination azimuth. A scoring index quantifies the quality of each match resulting in a classified image. The best value of the NDSI threshold is shown to vary significantly, forcing the algorithm to be iterated through many threshold values. Computational efficiency is achieved by using sub-sampled images with only minor degradation in cloud-detection performance. The algorithm detects all clouds in each of eight test Landsat-7 images and makes no incorrect cloud classifications. 相似文献
15.
Mait Lang Tiit Nilson Andres Kuusk Andres Kiviste Maris Hordo 《Remote sensing of environment》2007,110(4):445-457
Several published foliage mass and crown radius regression models were tested on the preparation of the input for the reflectance model of Kuusk and Nilson [Kuusk, A. and Nilson, T. (2000), A directional multispectral forest reflectance model. Remote Sensing of Environment, 72(2):244–252.] for 246 forest growth sample plots in Estonia. In each test, foliage mass and crown radius for trees in the sample plots were predicted with a particular pair of allometric regression models. The forest reflectance model was then run using the estimated foliage mass and crown radius values. Reflectance factors were simulated and compared with the reflectance values obtained from three atmospherically corrected Landsat 7 Enhanced Thematic Mapper (ETM+) scenes. The statistics of linear regression between the simulated and measured reflectance factors were used to assess the performance of foliage and crown radius models. The hypothesis was that the best allometric regression models should provide the best fit in reflectance. The strongest correlation between the simulated and measured reflectance factors was found in the short-wave infrared band (ETM + 5) for all the images. The highest R2 = 0.71 was observed in Picea abies dominated stands. No excellent combination of foliage mass and crown radius functions was found, but the ranking based on determination coefficients showed that some linear crown radius models are not applicable to our data. Processing of raster images, reflectance measurement for small sample plots, usage of tree-species-specific fixed parameters (specific leaf area, etc.), and the ignored influence of phenology introduced additional variation into the relationships between simulated and measured reflectance factors. Further studies are needed, but these preliminary results demonstrate that the proposed method could serve as an effective way of testing the performance of foliage mass and canopy cover regressions. 相似文献
16.
The predictability of the vegetation cycle is analyzed as a function of the spatial scale over West Africa during the period 1982-2004. The NDVI-AVHRR satellite data time series are spatially aggregated over windows covering a range of sizes from 8 × 8 km2 to 1024 × 1024 km2. The times series are then embedded in a low-dimensional pseudo-phase space using a system of time delayed coordinates. The correlation dimension (Dc) and entropy of the underlying vegetation dynamics, as well as the noise level (σ) are extracted from a nonlinear analysis of the time series. The horizon of predictability (HP) of the vegetation cycle defined as the time interval required for an n% RMS error on the vegetation state to double (i.e. reach 2n% RMS) is estimated from the entropy production. Compared to full resolution, the intermediate scales of aggregation (in the range of 64 × 64 km2 to 256 × 256 km2) provide times series with a slightly improved signal to noise ratio, longer horizon of predictability (about 2 to 5 decades) and preserve the most salient spatial patterns of the vegetation cycle. Insights on the best aggregation scale and on the expected vegetation cycle predictability over West Africa are provided by a set of maps of the correlation dimension (Dc), the horizon of predictability (HP) and the level of noise (σ). 相似文献