首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The sensitivity of TerraSAR-X radar signals to surface soil parameters has been examined over agricultural fields, using HH polarization and various incidence angles (26°, 28°, 50°, 52°). The results show that the radar signal is slightly more sensitive to surface roughness at high incidence (50°–52°) than at low incidence (26°–28°). The difference observed in the X-band, between radar signals reflected by the roughest and smoothest areas, reaches a maximum of the order of 5.5 dB at 50°–52°, and 4 dB at 26°–28°. This sensitivity increases in the L-band with PALSAR/ALOS data, for which the dynamics of the return radar signal as a function of soil roughness reach 8 dB at HH38°. In the C-band, ASAR/ENVISAT data (HH and VV polarizations at an incidence angle of 23°) are characterised by a difference of about 4 dB between the signals backscattered by smooth and rough areas.Our results also show that the sensitivity of TerraSAR-X signal to surface roughness decreases in very wet and frozen soil conditions. Moreover, the difference in backscattered signal between smooth and rough fields is greater at high incidence angles. The low-to-high incidence signal ratio (Δσ° = σ26°–28°/σ50°–52°) decreases with surface roughness, and has a dynamic range, as a function of surface roughness, smaller than that of the backscattering coefficients at low and high incidences alone. Under very wet soil conditions (for soil moistures between 32% and 41%), the radar signal decreases by about 4 dB. This decrease appears to be independent of incidence angle, and the ratio Δσ° is found to be independent of soil moisture.  相似文献   

2.
Radar backscatters from loam with a dry bulk density of 0·6g/cm3 have been measured at 9·9 GHz using both linear and circular polarizations. The sensitivity of radar return to soil moisture content has been obtained at five polarization combinations, HH, VV, HV, LR and LL (L and R denote the left-circular and the right-circular polarizations, respectively). Comparison of the moisture sensitivities shows that the sensitivity of HV is the highest among five polarizations and the sensitivity of LL is slightly higher than that of HH, VV and LR. Surface scatter theories are discussed in relation to the moisture sensitivities of five polarizations.  相似文献   

3.
A new empirical model for the retrieval, at a field scale, of the bare soil moisture content and the surface roughness characteristics from radar measurements is proposed. The derivation of the algorithm is based on the results of three experimental radar campaigns conducted under natural conditions over agricultural areas. Radar data were acquired by means of several C-band space borne (SIR-C, RADARSAT) or helicopter borne (ERASME) sensors, operating in different configurations of polarization (HH or VV) and incidence angle. Simultaneously to radar acquisitions, a complete ground truth data base was built up with different surface condition measurements of the mean standard deviation (rms) height s, the correlation length l, and the volumetric surface moisture Mv. This algorithm is more specifically developed using the radar cross-section σ0 (HH polarization and 39° incidence angle off nadir), namely, σ0HH,39, and the differential (HH polarization) radar cross-section Δσ0=σ0,23°σ0,39° in terms of an original roughness parameter, Zs, namely Zs=s2/l, and Mv. A good agreement is observed between model outputs and backscattering measurements over different test fields. Eventually, an inversion technique is proposed to retrieve Zs and Mv from radar measurements.  相似文献   

4.
Images of rain events over the ocean acquired by a multi‐frequency/multi‐polarization Synthetic Aperture Radar (SAR) show different radar contrasts at different frequencies and polarizations. In order to better understand these effects, field and laboratory experiments were performed at different rain rates and wind speeds with scatterometers working at different radar frequencies, polarizations, and incidence angles. Our results show that the dominant scattering mechanism on a rain‐roughened water surface, observed at VV polarization, at all incidence angles is Bragg scattering from ring waves. At HH polarization the radar backscatter is caused by both ring waves and non‐propagating splash products, with the dominating effect depending on incidence angle. The reduction and enhancement of the surface roughness by ring waves and sub‐surface phenomena, respectively, result in a transition wavenumber between reduction of the radar backscattering and its enhancement of about 100 rad m?1. We assume that this transition wavenumber depends on the drop‐size distribution of the rain. Taking into consideration the different dependencies of the radar backscatter at different frequencies and polarizations on rain rate, we suggest a method to estimate rain rates by calculating the ratio of the radar cross‐sections at L band, VV polarization and at C band, HV polarization. Provided an availability of SAR data at the respective frequency–polarization combinations, this method allows for investigating the nature of small‐scale (convective) rain events over the ocean.  相似文献   

5.
The relationship between leaf area index (LAI) of plantations and multi-polarization Synthetic Aperture Radar (SAR) data (Envisat-ASAR) was investigated for White Poplar (Populus tomentosa Carr) and Desert Date (Elaeagnus angustifolius) in Heihe district, northwest china. The study showed that, for homogeneous White Poplar plantations, HH and HV polarization data (where H and V represent horizontal and vertical polarizations, respectively, and the first of the two letters refers to the transmission polarization and the second to the received polarization) were sensitive to LAI and the r2 (logistic relationship fits) values between HH polarization and LAI, 0.56 and 0.58 on 25 and 28 June images respectively, was much higher than that for the other polarizations of VV, VH and HV. For Desert Date plantations, the heterogeneity of the forests results in a more complex backscattering than that for White Poplar. Incidence angle also plays an important role in SAR backscattering, so a suitable SAR mode should be chosen to avoid scattering saturation when the LAI and incidence angle exceed certain values. The logistic polarization ratios of HH/HV and VV/VH showed varying correlation with LAI over White Poplar plantations, probably due to incidence angle.  相似文献   

6.
As a basis for inversion algorithms, there is a need for the development of simple backscattering soil models which can account for the variations of incidence angle observed in the same picture or in multiangle systems. A correction factor for the variations of incidence angle is therefore coupled with a classical linear model of the variation of backscattering coefficient with surface soil moisture in a four-parameter model. The correction factor is based on the cosine-type behaviour of the backscattering coefficient as a function of incidence angle, which is observed for rough agricultural surfaces. This simple model is tested on radar measurements performed over a large range of radar configurations. The model is shown to reproduce correctly the observed variations of the radar signal with incidence angle and soil moisture. Its parameters have a physical sense and vary as expected, from literature, with frequency and polarization. When tested on data simulated by the analytical Integral Equation Model, the results of the cosine model are confirmed, as well as the variation of its calculated parameters with frequency and polarization. The inversion of the model with the angular correction factor shows that the cosine model allows the retrieval of soil moisture with a precision of about 20 per cent of the value at C band and at HV and HH polarization.  相似文献   

7.
Doñana National Park wetlands, in South West Spain, undergo yearly cycles of inundation and drying out. During the hydrological year 2006-2007, 43 ASAR/Envisat images of Doñana, mostly in HH and VV polarizations, were acquired with the aim to monitor the flood extent evolution during an entire flooding cycle. The images were ordered in the seven ASAR incidence angles, also referred to as swaths, to achieve high observation frequency.In this study, backscattering temporal signatures of the main land cover types in Doñana were obtained for the different incidence angles and polarizations. Plots showing the σ0HH/σ0VV ratio behavior were also produced. The signatures were analyzed with the aid of miscellaneous site data in order to identify the effect of the flooding on the backscattering. Conclusions on the feasibility to discriminate emerged versus flooded land are derived for the different incidence angles, land cover types and phenological stages: intermediate incidence angles (ASAR IS3 and IS4) came up as the most appropriate single swaths to discriminate open water surface from smooth bare soil in the marshland deepest areas. Flood mapping in pasture lands, the most elevated regions, is feasible at steep to mid incidence angles (ASAR IS1 to IS4). In the medium elevation zones, colonized by large helophytes, shallow incidence angles (ASAR IS6 and IS7) enable more accurate flood delineation during the vegetation growing phase.Since Doñana land covers require different observation swaths for flood detection, the composition of different incidence angle images close in time provides the optimum flood mapping. Such composition is possible four times per ASAR 35-day orbit cycle, using pairs of 12-h apart IS1/IS6 and IS2/IS5 Doñana images.  相似文献   

8.
Multi-temporal TerraSAR-X, ASAR/ENVISAT and PALSAR SAR data acquired at various incidence angles and polarizations were analyzed to study the potential of these new spaceborne SAR systems for monitoring sugarcane crops. The sensitivity of different radar parameters (wavelength, incidence angles, and polarization) to sugarcane growth stages was analyzed to determine the most suitable radar configuration for better characterisation of sugarcane fields and in particular the monitoring of sugarcane harvest.Correlation between backscattered signals and crop height was also carried out. Radar signal increased quickly with sugarcane height until a threshold height, which depended on radar wavelength and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is higher with longer wavelengths (L-band in comparison with C- and X-bands) and higher incidence angles (~ 40° in comparison with ~ 20°).The radar backscattering coefficients (σ°) were also compared to the Normalized Difference Vegetation Index (NDVI) calculated from SPOT-4/5 images. Results showed a high correlation between the behaviors of σ° and NDVI as a function of sugarcane crop parameters. A decrease in NDVI for fully mature sugarcane fields due to drying of the sugarcane (water stress) was also observed in the radar signal. This decrease in radar signal was of the same order as the decrease in radar signal after the sugarcane harvest. In general, it is more suitable to monitor the sugarcane harvest using high incidence angles regardless of the radar wavelength. SAR data in L- and C-bands showed an ambiguity between the signals of ploughed fields and those of fields in vegetation because of the high sensitivity of the radar signal at these wavelengths to surface roughness of bare soils. Indeed, sometimes the radar signal of ploughed fields was of the same order as that of harvested or mature sugarcane fields. Results showed better discrimination between ploughed fields and sugarcane fields in vegetation (sugarcane canopy) when using TerraSAR-X data (X-band).Concerning the influence of radar polarization, results showed that the co-polarizations channels (HH and VV) were well correlated, but had slightly less potential than cross-polarization channels (HV and VH) for the detection of the sugarcane harvest. Finally, SAR data at high spatial resolution were shown to be useful and necessary for better analysis of SAR images when the fields were of small size.  相似文献   

9.
Coastline mapping is of great interest in many different applications. In this Letter, we analyse the effect of the polarization and the incidence angle of the new Advanced Synthetic Aperture Radar (ASAR) sensor on coastline detection. Results indicate a marked dependence of the incidence angle and polarization on the delimitation between land and sea. At low incidence angles (<30°), delimitation is much clearer with HV polarization than with HH and VV polarizations. Delimitation is high whatever the polarization at high incidence angles (>30°). The multi‐polarization aspect of ASAR, in addition to its multi‐incidence aspect, therefore, allows coastline evolution to be monitored both more efficiently and more frequently. Consequently, the ASAR sensor is better adapted to coastline monitoring than the older ERS‐1/2 and Radarsat‐1 sensors.  相似文献   

10.
Abstract

Possible use of synthetic aperture radars (SAR) for monitoring agricultural canopies is investigated in this paper. Data have been acquired on the Orgcval watershed during the AGRISCATT'88 campaign. Four radar experiments were carried out with the airborne scattcrometer ERASME (C and X bands, HH and VV polarizations, multi-incidence angles). Simultaneous ground measurements (soil moisture, leaf area index, water content of the canopy) were conducted on 11 wheat fields. Backscattering coefficients of the canopies arc interpreted in the framework of semi-empirical ‘water-cloud’ models. A simple paramctrization of the angular effect of soil roughness is introduced, allowing the simultaneous use of multi-incidence angle radar data. With a unique set of parameters for each radar configuration ‘ frequency and polarization’ the water-cloud model appears to describe adequately the backscattering of all the fields, over the range of incidence angles. It is shown that in this case, attenuation is the dominant effect of the vegetation and an inversion algorithm is proposed for estimating the water content of vegetation. This algorithm requires measurements at two different incidence angles and various combinations of radar configurations are then tested.  相似文献   

11.
This study focuses on developing a new method of surface soil moisture estimation over wheat fields using Environmental Satellite Advanced Synthetic Aperture Radar (Envisat ASAR) and Landsat Thematic Mapper (TM) data. The Michigan Microwave Canopy Scattering (MIMICS) model was used to simulate wheat canopy backscattering coefficients from experiment plots at incidence angles of 23° (IS2) and 43.9° (IS7). Based on simulated data, the scattering characteristics of a wheat canopy were first investigated in order to derive an optimal configuration of polarization (HH) and incidence angle (IS2) for soil moisture estimation. Then a parametric model was developed to describe wheat canopy backscattering at the optimal configuration. In addition, direct backscattering and two-way transmissivity of wheat crowns were derived from the TM normalized difference vegetation index (NDVI); direct ground backscattering was derived from surface soil moisture and TM NDVI; and backscattering from double scattering was derived from total backscattering. A semi-empirical model for soil moisture estimation was derived from the parametric model. Coefficients in the semi-empirical model were obtained using a calibration approach based on measured soil moisture, ASAR, and TM data. A validation of the model was performed over the experimental area. In this study, the root mean square error (RMSE) for the estimated soil moisture was 0.041 m3 m?3, and the correlation coefficient between the measured and estimated soil moisture was 0.84. The experimental results indicate that the semi-empirical model could improve soil moisture estimation compared to an empirical model.  相似文献   

12.
Abstract

Most attempts at predicting soil moisture from C-band microwave backscattering coefficients for bare soil are made by fitting experimental calibration relations obtained for limited ranges of incidence angle and soil surface roughness. In this paper, a more general approach is discussed using an inversion procedure to extend the use of a single experimental calibration relation to a wider range of incidence angle and surface roughness. A correcting function is proposed to normalize the backscattering coefficients to the conditions (incidence angle and surface roughness) of the calibration relation. This correcting function was derived from simulated data using the physical optics or KirchhofTs scatter model using the scalar approximation. Before discussing the inversion procedure, the backscattering coefficients calculated by the model have been compared with experimental data measured in the C-band, HH polarization and three incidence angles (Θ= 15°, 23°, 50°) under a wide range of surface soil moisture conditions (0.02Hv  0.35cm3 cm-3) and for a single quite smooth soil surface roughness (0–011 s  OOI4/n)m. The model was found to be experimentally validated from 15° to 23° of incidence and for surface soil moistures higher than 0-I0cm3cm-3. For the inversion procedure, it is assumed to have a wider range of validity (15°  Θ 35° ) for ihc incidence angle. A sensitivity analysis of the model to errors on roughness parameter and incidence angle was performed in order to assess the feasability and suitability of the described inversion procedure.  相似文献   

13.
Soils play a key role in shaping the environment and in risk assessment. We characterized the soils of bare agricultural plots using TerraSAR-X (9.5 GHz) data acquired in 2009 and 2010. We analyzed the behavior of the TerraSAR-X signal for two configurations, HH-25° and HH-50°, with regard to several soil conditions: moisture content, surface roughness, soil composition and soil-surface structure (slaking crust).The TerraSAR-X signal was more sensitive to soil moisture at a low (25°) incidence angle than at a high incidence angle (50°). For high soil moisture (> 25%), the TerraSAR-X signal was more sensitive to soil roughness at a high incidence angle (50°) than at a low incidence angle (25°).The high spatial resolution of the TerraSAR-X data (1 m) enabled the soil composition and slaking crust to be analyzed at the within-plot scale based on the radar signal. The two loamy-soil categories that composed our training plots did not differ sufficiently in their percentages of sand and clay to be discriminated by the X-band radar signal.However, the spatial distribution of slaking crust could be detected when soil moisture variation is observed between soil crusted and soil without crust. Indeed, areas covered by slaking crust could have greater soil moisture and consequently a greater backscattering signal than soils without crust.  相似文献   

14.
微波遥感监测土壤水分的研究初探   总被引:30,自引:2,他引:28  
在GPS定位的基础上,同步测量土攘水分、土壤后向散射系数,和同步获取的X波段、HH机化SAR图像进行了土攘水分监N.]的徽波遥感试验研究。结果表明,X波段SAR图像的灰度与表层土壤(0~10cm)水分有较好的相关性,35OHH极化的土峨后向散射系数与SAR图像灰度和土攘水分也有较好的相关性,由SAR图像及土攘的后向散射系数估算的土峨水分精度相近,相对误差均为12%左右,因而利用X波段、HH极化的机载SAR图像监浏土壤水分是可行的。雷达图像的穿透力一般在10cm以内,因此探讨了由表层土壤水分推求剖面土壤水分的可能性,并提出以土攘水分计法在浏童精度和速度上改进传统土壤水分测量的方法。  相似文献   

15.
The study of radar backscattering signatures of wheat fields was investigated, using data collected on the Orgeval agricultural watershed (France) by the airborne scatterometer ERASME in C and X bands, HH and VV polarizations, at incidence angles from 15° to 45°, during two years for different soil moisture conditions with simultaneous ground-based measurements. A simple parameterization as water-cloud model with two driving parameters (the surface soil moisture and the plant water content) gives satisfactory results to estimate radar cross sections of wheat for a wide range of frequencies (C and X bands) and incidence angles (20° and 40°) within 1 dB in CHH and XHH and 2 dB in CVV and XVV. At the lower frequency (C band) the attenuated soil backscattering by the vegetation is dominant. It is shown that simple linear relations in C band between radar cross section and soil moisture are insufficient. A correction term for the vegetation attenuation is needed and is determined. Low contrast between the backscattering of dry and wet soil (around 6 dB) for a given vegetation density leads to a relatively high error in the estimation of soil moisture by radar (0.06 cm3 / cm3). At the higher frequency (X band), the radar backscattering is negatively correlated to the vegetation water content with a saturation of the radar cross section as the plant grows (about 6 dB of dynamic range between low and fully grown canopy) with no dependence on the soil signal. The achievable accuracy in the estimation of crop water content is the same at 20° and 40° and higher in XHH (about 0.5 kg/m2) than in XVV.  相似文献   

16.
This paper focuses on different methods for estimating soil moisture in a Sahelian environment by comparing ENVISAT/ASAR and ground data at the same spatial scale. The analysis is restricted to Wide Swath data in order to take advantage of their high temporal repetitivity (about 3-4 days) corresponding to a moderate spatial resolution (150 m). On the one hand, emphasis is put on the characterization of Surface Soil Moisture (SSM) at a spatial scale compatible with the derivation of the backscattering coefficients, and a transfer function is developed for up-scaling local measurements to the 1 km scale. On the other hand, three different approaches are used to normalize the angular variation of the observed backscattering coefficients. The results show a strong linear relationship between the HH normalized backscattering coefficients and SSM. The best result is obtained when restricting the ASAR data to low incidence angles and by taking into account vegetation effects using multi-angular radar data. For this case, the rms error of the SSM retrieval is 2.8%. These results highlight the capabilities of the ASAR instrument to monitor SSM in a semiarid environment.  相似文献   

17.
This paper discusses the effects of vegetation on C- (4.75 GHz) and L- (1.6 GHz) band backscattering (σo) measured throughout a growth cycle at incidence angles of 15, 35 and 55°. The utilized σo data set was collected by a truck mounted scatterometer over a corn field and is supported by a comprehensive set of ground measurements, including soil moisture and vegetation biomass. Comparison of σo measurement against simulations by the Integral Equation Method (IEM) surface scattering model (Fung et al., 1992) shows that the σo measurements are dominated either by an attenuated soil return or by scattering from vegetation depending on the antenna configuration and growth stage. Further, the measured σo is found to be sensitive to soil moisture even at peak biomass and large incidence angles, which is attributed to scattering along the soil-vegetation pathway.For the simulation of C-band σo and the retrieval of soil moisture two methods have been applied, which are the semi-empirical water cloud model (Attema & Ulaby, 1978) and a novel method. This alternative method uses the empirical relationships between the vegetation water content (W) and the ratio of the bare soil and the measured σo to correct for vegetation. It is found that this alternative method is superior in reproducing the measured σo as well as retrieving soil moisture. The highest retrieval accuracies are obtained at a 35° incidence angle leading to RMSD's of 0.044 and 0.037 m3 m− 3 for the HH and VV-polarization, respectively. In addition, the sensitivity of these soil moisture retrievals to W and surface roughness parameter uncertainties is investigated.  相似文献   

18.
Measurements of radar backscatter from bare soil at 9.0 GHz using a broad beam, with an effective beamwidth of product patterns and an incident angle of about 17° and 30°, respectively, have shown that the sensitivity of the cross-polarized (HV) return to soil moisture content was much higher than that of the like-polarized (HH) one. Analysis of the data shows that the observed HV back scattering power has a dependency of nearly Γ2, where Γ is the power reflection coefficient at a plane soil-air interface. This fact suggests that multiple scattering on rough soil surface caused the soil moisture sensitivity of the cross-polarized return to be high.  相似文献   

19.
A study was carried out to investigate the utility of L-band SAR data for estimating aboveground biomass in sites with low levels of vegetation regrowth. Data to estimate biomass were collected from 59 sites located in fire-disturbed black spruce forests in interior Alaska. PALSAR L-band data (HH and HV polarizations) collected on two dates in the summer/fall of 2007 and one date in the summer of 2009 were used. Significant linear correlations were found between the log of aboveground biomass (range of 0.02 to 22.2 t ha-1) and σ° (L-HH) and σ° (L-HV) for the data collected on each of the three dates, with the highest correlation found using the L-HV data collected when soil moisture was highest. Soil moisture, however, did change the correlations between L-band σ° and aboveground biomass, and the analyses suggest that the influence of soil moisture is biomass dependent. The results indicate that to use L-band SAR data for mapping aboveground biomass and monitoring forest regrowth will require development of approaches to account for the influence that variations in soil moisture have on L-band microwave backscatter, which can be particularly strong when low levels of aboveground biomass occur.  相似文献   

20.
利用多时相ASAR数据反演黑河流域中游地表土壤水分   总被引:5,自引:1,他引:4       下载免费PDF全文
土壤水分是地表能、水循环过程中的重要变量之一,利用主动微波遥感,特别是合成孔径雷达(SAR)进行土壤水分的反演已经越来越受到人们的关注。地表与微波相互作用机理非常复杂,受到粗糙度的强烈影响,成为制约土壤水分准确反演的一个重要因素。利用3景时序接近的ASAR影像对黑河中游临泽草地试验区地表参数进行了多通道的反演,获得了像元尺度上的粗糙度分布状况,从而不需要借助粗糙度的地面测量辅助信息,节省了工作量。土壤水分反演取得了较为满意的结果(均方根误差< 6%)。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号