首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we developed a new geospatial database of paddy rice agriculture for 13 countries in South and Southeast Asia. These countries have ∼ 30% of the world population and ∼ 2/3 of the total rice land area in the world. We used 8-day composite images (500-m spatial resolution) in 2002 from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the NASA EOS Terra satellite. Paddy rice fields are characterized by an initial period of flooding and transplanting, during which period a mixture of surface water and rice seedlings exists. We applied a paddy rice mapping algorithm that uses a time series of MODIS-derived vegetation indices to identify the initial period of flooding and transplanting in paddy rice fields, based on the increased surface moisture. The resultant MODIS-derived paddy rice map was compared to national agricultural statistical data at national and subnational levels. Area estimates of paddy rice were highly correlated at the national level and positively correlated at the subnational levels, although the agreement at the national level was much stronger. Discrepancies in rice area between the MODIS-derived and statistical datasets in some countries can be largely attributed to: (1) the statistical dataset is a sown area estimate (includes multiple cropping practices); (2) failure of the 500-m resolution MODIS-based algorithm in identifying small patches of paddy rice fields, primarily in areas where topography restricts field sizes; and (3) contamination by cloud. While further testing is needed, these results demonstrate the potential of the MODIS-based algorithm to generate updated datasets of paddy rice agriculture on a timely basis. The resultant geospatial database on the area and spatial distribution of paddy rice is useful for irrigation, food security, and trace gas emission estimates in those countries.  相似文献   

2.
The suitability of using Moderate Resolution Imaging Spectroradiometer (MODIS) images for surface soil moisture estimation to investigate the importance of soil moisture in different applications, such as agriculture, hydrology, meteorology and natural disaster management, is evaluated in this study. Soil moisture field measurements and MODIS images of relevant dates have been acquired. Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized Difference Water Index (NDWI) are calculated from MODIS images. In addition, MODIS Land Surface Temperature (LST) data (MOD11A1) are used in this analysis. Four different soil moisture estimation models, which are based on NDVI–LST, EVI–LST, NDVI–LST–NDWI and EVI–LST–NDWI, are developed and their accuracies are assessed. Statistical analysis shows that replacing EVI with NDVI in the model that is based on LST and NDVI increases the accuracy of soil moisture estimation. Accuracy evaluation of soil moisture estimation using check points shows that the model based on LST, EVI and NDWI values gives a higher accuracy than that based on LST and EVI values. It is concluded that the model based on the three indices is a suitable model to estimate soil moisture through MODIS imagery.  相似文献   

3.
For more than 20 years the Normalized Difference Vegetation Index (NDVI) has been widely used to monitor vegetation stress. It takes advantage of the differential reflection of green vegetation in the visible and near-infrared (NIR) portions of the spectrum and provides information on the vegetation condition. The Land Surface Water Index (LSWI) uses the shortwave infrared (SWIR) and the NIR regions of the electromagnetic spectrum. There is strong light absorption by liquid water in the SWIR, and the LSWI is known to be sensitive to the total amount of liquid water in vegetation and its soil background. In this study we investigated the LSWI characteristics relative to conventional NDVI-based drought assessment, particularly in the early crop season. The area chosen for the study was the state of Andhra Pradesh located in the Indian peninsular. The Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Index (VI) product from the Aqua satellite was used in the study. The analysis was carried out for the years 2002 (deficit year) and 2005 (normal year) using the NDVI from the MODIS VI product and deriving the LSWI using the NIR and SWIR reflectance available with the MODIS VI product. The response of LSWI to rainfall, observed in the rate of increase in LSWI in the subsequent fortnights, shows that this index could be used to monitor the increase in soil and vegetation liquid water content, especially during the early part of the season. The relationship between the cumulative rainfall and the current fortnight LSWI is stronger in the low rainfall region (<500 mm), while the one-fortnight lagged LSWI had a stronger relationship in the high rainfall region (>500 mm). The relationship between LSWI and the cumulative rainfall for the entire state was mixed in 2002 and 2005. The strength of the relationship was weak in the high rainfall region. When LSWI was regressed directly with NDVI for three LSWI ranges, it was observed that the NDVI with the one-fortnight lag had a strong relationship with the LSWI in most of the categories.  相似文献   

4.

A unique physical feature of paddy rice fields is that rice is grown on flooded soil. During the period of flooding and rice transplanting, there is a large proportion of surface water in a land surface consisting of water, vegetation and soils. The VEGETATION (VGT) sensor has four spectral bands that are equivalent to spectral bands of Landsat TM, and its mid-infrared spectral band is very sensitive to soil moisture and plant canopy water content. In this study we evaluated a VGT-derived normalized difference water index (NDWI VGT =(B3-MIR)/ (B3+MIR)) for describing temporal and spatial dynamics of surface moisture. Twenty-seven 10-day composites (VGT- S10) from 1 March to 30 November 1999 were acquired and analysed for a study area (175 km by 165 km) in eastern Jiangsu Province, China, where a winter wheat and paddy rice double cropping system dominates the landscape. We compared the temporal dynamics and spatial patterns of normalized difference vegetation index (NDVI VGT ) and NDWI VGT . The NDWI VGT temporal dynamics were sensitive enough to capture the substantial increases of surface water due to flooding and rice transplanting at paddy rice fields. A land use thematic map for the timing and location of flooding and rice transplanting was generated for the study area. Our results indicate that NDWI and NDVI temporal anomalies may provide a simple and effective tool for detection of flooding and rice transplanting across the landscape.  相似文献   

5.
Temperate East Asia (TEA) is characterized by diverse land cover types, including forest and agricultural lands, one of the world's largest temperate grasslands, and extensive desert and barren landscapes. In this paper, we explored the potential of SPOT-4 VEGETATION (VGT) data for the classification of land cover types in TEA. An unsupervised classification was performed using multi-temporal (March–November 2000) VGT-derived spectral indices (Land Surface Water Index [LSWI] and Enhanced Vegetation Index [EVI]) to generate a land cover map of TEA (called VGT-TEA). Land cover classes from VGT-TEA were aggregated to broad, general class types, and then compared and validated with classifications derived from fine-resolution (Landsat) data. VGT-TEA produced reasonable results when compared to the Landsat products. Analysis of the seasonal dynamics of LSWI and EVI allows for the identification of distinct growth patterns between different vegetation types. We suggest that LSWI seasonal curves can be used to define the growing season for temperate deciduous vegetation, including grassland types. Seasonal curves of EVI tend to have a slightly greater dynamic range than LSWI during the peak growing season and can be useful in discriminating between vegetation types. By using these two complementary spectral indices, VGT data can be used to produce timely and detailed land cover and phenology maps with limited ancillary data needed.  相似文献   

6.
Net ecosystem exchange (NEE) of CO2 between the atmosphere and forest ecosystems is determined by gross primary production (GPP) of vegetation and ecosystem respiration. CO2 flux measurements at individual CO2 eddy flux sites provide valuable information on the seasonal dynamics of GPP. In this paper, we developed and validated the satellite-based Vegetation Photosynthesis Model (VPM), using site-specific CO2 flux and climate data from a temperate deciduous broadleaf forest at Harvard Forest, Massachusetts, USA. The VPM model is built upon the conceptual partitioning of photosynthetically active vegetation and non-photosynthetic vegetation (NPV) within the leaf and canopy. It estimates GPP, using satellite-derived Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI), air temperature and photosynthetically active radiation (PAR). Multi-year (1998-2001) data analyses have shown that EVI had a stronger linear relationship with GPP than did the Normalized Difference Vegetation Index (NDVI). Two simulations of the VPM model were conducted, using vegetation indices from the VEGETATION (VGT) sensor onboard the SPOT-4 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Terra satellite. The predicted GPP values agreed reasonably well with observed GPP of the deciduous broadleaf forest at Harvard Forest, Massachusetts. This study highlighted the biophysical performance of improved vegetation indices in relation to GPP and demonstrated the potential of the VPM model for scaling-up of GPP of deciduous broadleaf forests.  相似文献   

7.
This study investigates the impact of using different combinations of Moderate Resolution Imaging Spectroradiometer (MODIS) and ancillary datasets on overall and per-class classification accuracies for nine land cover types modified from the classification system of the International Geosphere Biosphere Programme (IGBP). Twelve land cover maps were generated for Turkey using boosted decision trees (BDTs) based on the stepwise addition of 14 explanatory variables derived from a time series of 16-day MODIS composites between 2000 and 2006 (Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and four spectral bands) and ancillary climate and topographic data (minimum and maximum air temperature, precipitation, potential evapotranspiration, aspect, elevation, distance to sea and slope) at 500-m resolution. Evaluation of the 12 BDTs indicated that the BDT built as a function of all the MODIS and climate variables, aspect and elevation produced the highest degree of overall classification accuracy (79.8%) and kappa statistic (0.76) followed by the BDTs that additionally included distance to sea (DtS), and both DtS and slope. Based on an independent validation dataset derived from a pre-existing national forest map and Landsat images of Turkey, the highest overall accuracy (64.7%) and kappa coefficient (0.58) among the 12 land cover maps was achieved by using MODIS-derived NDVI time series only, followed by NDVI and EVI time series combined; NDVI, EVI and four MODIS spectral bands; and the combination of all MODIS and climate data, aspect, elevation and distance to sea, respectively. The largest improvements in producer's accuracies were observed for grasslands (+50%), barrenlands (+46%) and mixed forests (+39%) and in user's accuracies for grasslands (+53%), shrublands (+30%) and mixed forests (+28%), in relation to the lowest producer's accuracy. The results of this study indicate that BDTs can increase the accuracy of land cover classifications at the national scale.  相似文献   

8.
The global environmental change research community requires improved and up-to-date land use/land cover (LULC) datasets at regional to global scales to support a variety of science and policy applications. Considerable strides have been made to improve large-area LULC datasets, but little emphasis has been placed on thematically detailed crop mapping, despite the considerable influence of management activities in the cropland sector on various environmental processes and the economy. Time-series MODIS 250 m Vegetation Index (VI) datasets hold considerable promise for large-area crop mapping in an agriculturally intensive region such as the U.S. Central Great Plains, given their global coverage, intermediate spatial resolution, high temporal resolution (16-day composite period), and cost-free status. However, the specific spectral-temporal information contained in these data has yet to be thoroughly explored and their applicability for large-area crop-related LULC classification is relatively unknown. The objective of this research was to investigate the general applicability of the time-series MODIS 250 m Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) datasets for crop-related LULC classification in this region. A combination of graphical and statistical analyses were performed on a 12-month time-series of MODIS EVI and NDVI data from more than 2000 cropped field sites across the U.S. state of Kansas. Both MODIS VI datasets were found to have sufficient spatial, spectral, and temporal resolutions to detect unique multi-temporal signatures for each of the region's major crop types (alfalfa, corn, sorghum, soybeans, and winter wheat) and management practices (double crop, fallow, and irrigation). Each crop's multi-temporal VI signature was consistent with its general phenological characteristics and most crop classes were spectrally separable at some point during the growing season. Regional intra-class VI signature variations were found for some crops across Kansas that reflected the state's climate and planting time differences. The multi-temporal EVI and NDVI data tracked similar seasonal responses for all crops and were highly correlated across the growing season. However, differences between EVI and NDVI responses were most pronounced during the senescence phase of the growing season.  相似文献   

9.
Fourier analysis of Moderate Resolution Image Spectrometer (MODIS) time‐series data was applied to monitor the flooding extent of the Waza‐Logone floodplain, located in the north of Cameroon. Fourier transform (FT) enabled quantification of the temporal distribution of the MIR band and three different indices: the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), and the Enhanced Vegetation Index (EVI). The resulting amplitude, phase, and amplitude variance images for harmonics 0 to 3 were used as inputs for an artificial neural network (ANN) to differentiate between the different land cover/land use classes: flooded land, dry land, and irrigated rice cultivation. Different combinations of input variables were evaluated by calculating the Kappa Index of Agreement (KIA) of the resulting classification maps. The combinations MIR/NDVI and MIR/EVI resulted in the highest KIA values. When the ANN was trained on pixels from different years, a more robust classifier was obtained, which could consistently separate flooded land from dry land for each year.  相似文献   

10.
Sonoran Desert bighorn sheep (Ovis canadensis mexicana) occupy rugged upland areas that experience irregular periods of vegetation growth associated with precipitation events. These episodic and often spatially limited events provide important forage and preformed water resources that may be important drivers of animal movement and habitat use. Habitat-use models that incorporate forage phenology would broaden our understanding of desert bighorn ecology and have considerable potential to inform conservation efforts for the species. Field-based methods are of limited utility to characterize vegetation phenology across large areas. Vegetation indices (VI) derived from satellite imagery are a viable alternative, but may be confounded by areas of high relief and shadow effects that can degrade VI values. The varying spatial and temporal resolutions of readily available satellite sensors, such as the Landsat thematic mapper (TM) and moderate-resolution imaging spectrometer (MODIS), present additional challenges. In this study, we sought to minimize degrading effects of terrain on TM- and MODIS-based estimates of vegetation phenology. We compared effects of high topographic relief on time series MODIS- and TM-based VI such as the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) using VI departures from average (DA) in shaded and unshaded areas. Sun elevation angle negatively impacted TM-derived NDVI and EVI values in areas of steep terrain. In contrast, MODIS-derived NDVI values were insensitive to sun elevation and terrain effects, whereas MODIS-derived EVI was degraded in areas of steep terrain. Time series MODIS NDVI and EVI DA values differed significantly during months of low sun elevation angle. Average MODIS EVI departure values were ≥20% lower than NDVI under these conditions, confounding time series estimates of plant phenology. Our best results were obtained from MODIS 16-day composited NDVI. These remote-sensing-based VI estimates of seasonal plant phenology and productivity can be used to inform models of habitat use and movements of desert bighorn over large areas.  相似文献   

11.
不同辐射校正水平下水稻植被指数监测对比分析   总被引:3,自引:0,他引:3  
归一化植被指数(NDVI)是反映植被长势特征的重要参数之一。获取准确的植被指数对揭示植被长势变化等定量遥感分析至关重要。基于不同辐射校正水平(辐射定标与大气校正),分别利用Landsat ETM+影像的灰度值(DN)、表观(TOA)反射率与地表(Surface)反射率计算相应NDVI,并根据鄱阳湖区野外定点观测数据,从农田、景观尺度揭示不同辐射校正水平下水稻生育期内NDVI动态变化特征。结果表明,根据DN、TOA反射率与Surface反射率提取的NDVI基本上可以反映出年内水稻不同熟制种植信息变化特征,即移栽期NDVI处于谷值,孕穗抽穗期NDVI达到峰值。但相应NDVI逐渐增加,且波动范围逐渐增大。就不同熟制水稻生育期而言,根据DN值计算并构建的NDVI曲线差异较小,而根据TOA反射率与Surface反射率反演的NDVI曲线差异明显。在植被定量遥感研究中,通过大气校正反演地表反射率计算植被指数相对客观准确。  相似文献   

12.
Vegetation indices (VIs) such as the Normalized Difference Vegetation Index (NDVI) are widely used for assessing vegetation cover and condition. One of the NDVI's significant disadvantages is its sensitivity to aerosols in the atmosphere, hence several atmospherically resistant VIs were formulated using the difference in the radiance between the blue and the red spectral bands. The state‐of‐the‐art atmospherically resistant VI, which is a standard Moderate Resolution Imaging Spectroradiometer (MODIS) product, together with the NDVI, is the Enhanced Vegetation Index (EVI). A different approach introduced the Aerosol‐free Vegetation Index (AFRI) that is based on the correlation between the shortwave infrared (SWIR) and the visible red bands. The AFRI main advantage is in penetrating an opaque atmosphere influenced by biomass burning smoke, without the need for explicit correction for the aerosol effect. The objective of this research was to compare the performance of these three VIs under smoke conditions. The AFRI was applied to the 2.1 µm SWIR channel of the MODIS sensor onboard the Earth Observing System (EOS) Terra and Aqua satellites in order to assess its functionality on these imaging platforms. The AFRI performance was compared with those of NDVI and EVI. All VIs were calculated on images with and without present smoke, using the surface‐reflectance MODIS product, for three case studies of fires in Arizona, California, and Zambia. The MODIS Fire Product was embedded on the images in order to identify the exact location of the active fires. Although good correlations were observed between all VIs in the absence of smoke (in the Arizona case R 2 = 0.86, 0.77, 0.88 for the NDVI–EVI, AFRI–EVI, and AFRI–NDVI, respectively) under smoke conditions a high correlation was maintained between the NDVI and the EVI, while low correlations were found for the AFRI–EVI and AFRI–NDVI (0.21 and 0.16, for the Arizona case, respectively). A time series of MODIS images recorded over Zambia during the summer of 2000 was tested and showed high NDVI fluctuations during the study period due to oscillations in aerosol optical thickness values despite application of aerosol corrections on the images. In contrast, the AFRI showed smoother variations and managed to better assess the vegetation condition. It is concluded that, beneath the biomass burning smoke, the AFRI is more effective than the EVI in observing the vegetation conditions.  相似文献   

13.
MODIS数据在树种长势监测中的应用   总被引:7,自引:2,他引:5  
近年来,世界各国日益重视利用“3S”(遥感、地理信息系统和全球定位系统)技术对陆地表面植被进行研究。利用Terra-MODIS数据,分别采用了归一化植被指数(NDVI)、环境植被指数(EVI)、土壤调节植被指数(SAVI)以及比值植被指数(RVI)对实验区典型树种的长势进行了比较研究;同时对实验区典型树种的植被指数的地域变化和时间变化进行了分析,为探讨我国可燃物的时空变化规律打下了基础。  相似文献   

14.
In monsoon Asia, optical satellite remote sensing for rice paddy phenology suffers from atmospheric contaminations mainly due to frequent cloud cover. We evaluated the quality of satellite remote sensing of paddy phenology: (1) through continuous in situ observations of a paddy field in Japan for 1.5 years, we investigated phenological signals in the reflectance spectrum of the paddy field; (2) we tested daily satellite data taken by Terra/Aqua MODIS (MOD09 and L1B products) with regard to the agreement with the in situ data and the influence of cloud contamination. As a result, the in situ spectral characteristics evidently indicated some phenological changes in the rice paddy field, such as irrigation start, padding, heading, harvest and ploughing. The Enhanced Vegetation Index (EVI) was the best vegetation index in terms of agreement with the in situ data. More than 65% of MODIS observations were contaminated with clouds in this region. However, the combined use of Terra and Aqua decreased the rate of cloud contamination of the daily data to 43%. In conclusion, the most robust dataset for monitoring rice paddy phenology in monsoon Asia would be daily EVI derived from a combination of Terra/MODIS and Aqua/MODIS.  相似文献   

15.
为了探讨多源卫星遥感数据针对同一地区同一时刻旱情所得植被供水指数的差异,选择我国华北地区旱灾发生频率较高、影响较广的河北地区为研究区,针对近年来干旱监测应用较为广泛的Landsat TM/ETM+和EOS MODIS数据,分别进行植被供水指数的提取,并进行两者之间的对比分析,得出以下结论:① TM VSWI (Vegetation Supply Water Index) 与MODIS VSWI之间数值上存在一定的差别,变化范围在-0.51~0.20之间。其中负值主要集中在城镇、裸地及水体地表;② 在植被覆盖区,TM的平均VSWI大于MODIS的,但两者差别不大;③ 在各种植被覆盖度条件下,TM VSWI与MODIS VSWI差值的最小值、最大值和均值均表现出随着植被覆盖度的增加,其值逐渐增大的特点。该结论可以为两种遥感数据源干旱监测的差异分析及综合应用提供重要的参考依据。  相似文献   

16.
Recent technological advances in remote sensing have shown that soil moisture can be measured by microwave remote sensing under some topographic and vegetation cover conditions. However, current microwave technology limits the spatial resolution of soil moisture data. It has been found that the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) are related to surface soil moisture; therefore, a relationship between ground observed soil moisture and satellite NDVI and LST products can be developed. Three years of 1 km NDVI and LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) have been combined with ground measured soil moisture to determine regression relationships at a 1 km scale. Results show that MODIS NDVI and LST are strongly correlated with the ground measured soil moisture, and regression relationships are land cover and soil type dependent. These regression relationships can be used to generate soil moisture estimates at moderate resolution for study area.  相似文献   

17.
Monitoring changes of paddy rice is challenging due to its diverse cropping patterns and spectral variation. To investigate the spatio-temporal changes of rice cropping, we used the 10-day composited Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data with a spatial resolution of 250 m to map the sub-pixel rice spatial distributions in the Hunan Province, the top one region in rice planting area in southern of China. A method of improved phenology-based temporal mixture analysis (PTMA) was presented to identify early, middle, and late rice cropping patterns. The results show that the PTMA is effective to extract rice cropping. The nine rice cropping patterns were classified as early, middle, and late rice cropping, and fractional rice cropping within 250 m pixels was obtained to analyse the internal changes. Both the local planting conditions and different forms of rice cultivation were compared with statistical data. Overall, MODIS-estimated fractional rice agreed well with field samples at the pixel level and statistical data at the county level, which demonstrates the effectiveness of the PTMA method for mapping rice in these hilly regions with small-size paddy rice field. The changes show that single-cropping rice and double-cropping rice have been frequently transferred in space, which could be important information to support agricultural decision-making.  相似文献   

18.
The eddy covariance technique provides measurements of net ecosystem exchange (NEE) of CO2 between the atmosphere and terrestrial ecosystems, which is widely used to estimate ecosystem respiration and gross primary production (GPP) at a number of CO2 eddy flux tower sites. In this paper, canopy-level maximum light use efficiency, a key parameter in the satellite-based Vegetation Photosynthesis Model (VPM), was estimated by using the observed CO2 flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites in an alpine swamp ecosystem, an alpine shrub ecosystem and an alpine meadow ecosystem in Qinghai-Tibetan Plateau, China. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)) derived from the Moderate Resolution Imaging Spectral radiometer (MODIS) data and climate data at the flux tower sites, and estimated the seasonal dynamics of GPP of the three alpine grassland ecosystems in Qinghai-Tibetan Plateau. The seasonal dynamics of GPP predicted by the VPM model agreed well with estimated GPP from eddy flux towers. These results demonstrated the potential of the satellite-driven VPM model for scaling-up GPP of alpine grassland ecosystems, a key component for the study of the carbon cycle at regional and global scales.  相似文献   

19.
基于MODIS和AMSR-E遥感数据的土壤水分降尺度研究   总被引:3,自引:0,他引:3  
微波传感器获得的土壤水分产品空间分辨率一般都很粗,而流域尺度上的研究需要中高分辨率的土壤水分数据。用MODIS逐日地表温度产品MOD11A1和逐日地表反射率产品MOD09GA构建温度-植被指数特征空间,并计算得到TVDI(Temperature Vegetation Dryness Index)指数,它与土壤水分呈负相关关系,能够反映土壤水分的空间分布模式,但并不是真实的土壤水分值。在AMSR-E像元尺度上求得TVDI与土壤水分的负相关系数,进而对VUA AMSR-E土壤水分产品进行降尺度计算得到0.01°分辨率的真实土壤水分值。经NAFE06(The National Airborne Field Experiment 2006)试验地面采样数据验证,降尺度后的土壤水分均方根误差平均值为6.1%。  相似文献   

20.
Sentinel-1A synthetic aperture radar (SAR) data present an opportunity for acquiring crop information without restrictions caused by weather and illumination conditions, at a spatial resolution appropriate for individual rice fields and a temporal resolution sufficient to capture the growth profiles of different crop species. This study investigated the use of multi-temporal Sentinel-1A SAR data and Landsat-derived normalized difference vegetation index (NDVI) data to map the spatial distribution of paddy rice fields across parts of the Sanjiang plain, in northeast China. The satellite sensor data were acquired throughout the rice crop-growing season (May–October). A co-registered set of 10 dual polarization (VH/VV) SAR and NDVI images depicting crop phenological development were used as inputs to Support Vector Machine (SVM) and Random Forest (RF) machine learning classification algorithms in order to map paddy rice fields. The results showed a significant increase in overall classification when the NDVI time-series data were integrated with the various combinations of multi-temporal polarization channels (i.e. VH, VV, and VH/VV). The highest classification accuracies overall (95.2%) and for paddy rice (96.7%) were generated using the RF algorithm applied to combined multi-temporal VH polarization and NDVI data. The SVM classifier was most effective when applied to the dual polarization (i.e. VH and VV) SAR data alone and this generated overall and paddy rice classification accuracies of 91.6% and 82.5%, respectively. The results demonstrate the practicality of implementing RF or SVM machine learning algorithms to produce 10 m spatial resolution maps of paddy rice fields with limited ground data using a combination of multi-temporal SAR and NDVI data, where available, or SAR data alone. The methodological framework developed in this study is apposite for large-scale implementation across China and other major rice-growing regions of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号