首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
地层水矿化度对泥质砂岩物理性质的影响   总被引:4,自引:0,他引:4  
依据多矿化度岩石电性及核磁特性实验,研究不同矿化度下泥质砂岩的束缚水饱和度、岩石电性以及核磁共振的变化特征.研究表明,不同矿化度下的泥质砂岩束缚水饱和度不同,随饱和溶液矿化度的增大而减小;在地层水矿化度较低情况下,由于较高的束缚水含量和泥质附加导电性,岩石的电阻率也可能呈现低电阻率特征;T2受到饱和溶液矿化度的影响,矿化度的变化带来T2谱分布形态的变化,T2截止值随饱和溶液矿化度的增大而减小.  相似文献   

2.
张志存  董丽华 《测井技术》2006,30(2):109-112
以泥质砂岩导电性实验和简化的岩石导电模型为基础,分析了泥质砂岩电阻率影响因素.确定了泥质附加导电的大小.淡水条件下的泥质附加导电性的大小不但与泥质体积有关,而且与地层水电阻率、孔隙度的大小有关,据此给出了一种简单的含水饱和度计算方法.实际应用表明,所给出的含水饱和度计算方法简便易行,泥质校正合理,所提供的含水饱和度比较准确,可以推广应用.  相似文献   

3.
泥质砂岩含水饱和度方程理论模型推导   总被引:1,自引:0,他引:1  
根据HB方程并考虑多种导电影响因素,得到了泥质砂岩的含水饱和度理论公式。该理论公式与已有公式相比,较全面地考虑了诸如泥质导电、岩石骨架导电、地层束缚水导电等因素对岩石整体导电性的贡献,为进一步研究泥质砂岩含水饱和度奠定了基础。  相似文献   

4.
Waxman-Smits电导率模型和双水模型描述了泥质砂岩中通过孔隙中的地层水和粘土矿物的阳离子交换这两种途径导电的泥质砂岩导电特性,而阿尔奇公式描述了纯砂岩层的导电特性。这些经典模型在解释同类储集层的电测井响应方面很成功,然而,它们却不能明确分析岩石构造、孔隙中流体分布、润湿性或粘土矿物分布对岩石导电特性的影响。本文通过计算粘土矿物的附加电导率来定量研究岩石物性、结构、流体等因素对泥质砂岩电导率的影响,进而研究饱含盐水和油气的泥质砂岩的孔隙几何形态。 通过建立孔隙范围模型来描述同类泥质砂岩的压实、胶结以及粘土矿物的扩散分布等结构因素。与孔隙中粘土矿物的分布相关的阳离子交换对岩石形成一个有效的电导率,这个电导率随地层水矿化度变化而变化。两相不混合流体在孔隙中的几何分布遵循毛细管压力和排水循环的规律。孔隙中地层水和粘土矿物阳离子交换形成导电空间,在这个导电空间中离子自由扩散被强化,W—S地层因素和电阻率指数通过自由扩散后期的扩散渐近线来计算。 本文中将引入孔隙几何形态的方法来研究同类泥质砂岩中粘土矿物的数量、空间分布和它们的阳离子交换,流体饱和度和地层水矿化度等对岩石电导率的影响,从而更准确计算泥质砂岩电导率。如果孔隙中含水饱和度、矿化度和粘土矿物分布有所改变,那么附加电导率将有一个明显的改变。  相似文献   

5.
 根据不同孔渗特性储层岩心分析资料,建立了反映特定储层孔隙结构特征的三维逾渗网络模型。首先通过模拟结果和实验结果的对比,分析了不同孔渗储层电性的总体特征,然后通过数值模拟研究了地层水电阻率、泥质含量等对不同孔渗岩石电性的影响。研究结果表明:随着孔渗特性的降低,相同含水饱和度下电阻率升高;低孔低渗储层的束缚水饱和度大于高孔高渗储层。地层水电阻率、泥质含量等对岩石电性的影响同储层的孔渗特性有关:地层水电阻率、泥质含量等对低孔低渗储层岩石电性的影响幅度明显大于对高孔高渗储层岩石电性的影响幅度;当黏土阳离子交换浓度较低时,泥质对低孔低渗储层岩石的电性也有较大的影响。在低孔低渗储层电性研究及测井评价中,准确求取地层水电阻率、泥质含量等物性参数具有重要意义。  相似文献   

6.
混合泥质砂岩有效介质通用HB电阻率模型研究   总被引:14,自引:1,他引:13  
本文基于Berg提出的层状泥质或分散泥质砂岩有效介质HB电阻率模型,考虑总孔隙中黏土结合水的体积,不考虑黏土结合水与地层水导电性的差别,将该差别归结到黏土颗粒导电中,建立了混合泥质砂岩有效介质通用HB电阻率模型。通过对该模型的影响因素分析发现,泥质分布形式对模型计算的含水饱和度有很大影响;砂岩颗粒或黏土颗粒的电阻率越小,颗粒电阻率对C1(泥质砂岩地层电导率)与Swt(总含水饱和度)关系影响越大;m(胶结指数)(m=n)对C1与Swt关系曲线的影响随Swt的增大而增大。通过一组骨架导电的人造岩样试验表明,该模型可以用于不含黏土的骨架导电的岩石,但地层水电阻率应小于颗粒电阻率。通过一组分散泥质砂岩岩样实验测量数据的计算表明,模型中引入参数n(m≠n)可以使拟合的Ct的相对误差减小,但在考虑黏土结合水与地层水导电性差别时,模型中虽多加一个参数,却没有减小拟合的Ct的相对误差。通过一组层状泥质砂岩测井资料解释表明,该模型适用于层状泥质砂岩地层解释;通过考察实际应用中Rdc、Vac对该模型计算含水饱和度的影响,说明在实际应用中Rdc代表黏土电阻率,而Vdc代表干黏土含量是合适的,因此,使用文中给出的电阻率模型能更好地进行泥质砂岩电阻率模型研究。  相似文献   

7.
根据HB方程并考虑多种导电影响因素,得到了泥质砂岩的含水饱和度理论公式,该理论公式与已有公式相比,较全面地考虑了诸如泥质导电,岩石骨架导电,地质束缚水导电等因素对岩石整体导电性的贡献,为进一步研究泥质砂岩含水饱和度奠定了基础。  相似文献   

8.
宏观导电机理下的泥质砂岩含水饱和度解释模型   总被引:3,自引:1,他引:3  
认为泥质砂岩的导电体积由两部分组成,即完全被束缚水占据的微孔隙(孔喉半径小于0.1μm,其中的流体不能渗流)导电体积和有效孔隙中被可动水、束缚水占据部分的导电体积,泥质砂岩的整个导电响应为二者之和,但二者导电体的导电特性不同,各有其不同的几何因子。考虑成岩过程中地层水的变化和阳离子的交换吸附作用,提出泥质砂岩含水饱和度的双孔隙导电体积解释模型,模型所有特征参数均可由测井解释获得,并有明确的地质和物理意义,可与岩心数据对比。应用该模型解释胜利油区孤东油田3口井的馆陶组泥质砂岩含水饱和度,解释结果与其油基钻井液取心分析的含水饱和度数据对应良好。  相似文献   

9.
含泥含钙储层泥质和钙质成份对电阻率贡献具有复杂性,其饱和度的定量评价更加困难.通过考察储层品质指数与孔隙度的关系,确定双对数关系曲线下的斜率值,为混合泥质砂岩饱和度模型的选取提供了依据.钙质颗粒作为砂岩储层电阻率的重要影响因素,其成份的增加不仅会引起孔隙度的降低,而且引起孔隙通道曲折度的增大,从而导致地层电阻率值升高.在上述理论分析基础上,提出含泥含钙砂岩储层体积模型,并以有效介质理论为基础,建立了混合泥质含钙砂岩储层有效介质饱和度模型.该模型基于层状泥质与分散泥质砂岩并联导电以及分散泥质砂岩的有效介质SATORI电阻率模型,其中将分散泥质砂岩分成导电的砂岩骨架颗粒、不导电的油气、分散粘土颗粒、钙质颗粒、微毛管孔隙水以及可动水等6种成份,充分考虑了钙质成份的导电特性、微孔隙水的影响作用以及粘土的附加导电性等因素.经岩电实验数据拟合与实际资料处理结果表明,模型具有较强的适应性和计算精度.  相似文献   

10.
研究了长垣地区F油层储层特征,该区F油层为低孔隙度特低渗透率储层,泥质含量高,微孔隙发育,孔隙结构复杂,束缚水饱和度高。基于该区F油层具有泥质附加导电、束缚水导电和可动水导电的特征,结合连通导电理论,将地层划分为骨架相、自由流体相和黏土相。考虑了黏土水、束缚水、可动水导电路径不同对岩石导电性的影响,认为3个导电相有不同的导电指数,并对其分别应用连通方程,得出各相电导率。用混合导电理论将各相电导率与地层总电导率联系起来,建立适用于长垣地区F油层的连通导电模型。讨论了连通导电模型中水连通校正系数对岩石导电规律的影响,从理论上分析了各导电相导电指数间的相互关系,得出该地区F油层的骨架相和黏土相导电指数均小于等于自由流体相导电指数。利用岩电实验数据,采用最优化方法确定了模型中的各导电相导电指数。密闭取心井含水饱和度对比和试油结果验证表明,该模型可很好地应用于该区F油层的低孔隙度低渗透率泥质砂岩储层定量评价。  相似文献   

11.
以X射线衍射、扫描电镜、岩电实验、物性分析报告、试油等资料为基础 ,研究临南油田夏 5 2块沙三中泥质砂岩油层低电阻的成因机理 ,认为富含高岭石的泥质砂岩油层 ,泥质附加导电性不是电阻率降低的主导因素 ,更重要的是高束缚水饱和度和高地层水矿化度。泥质含量高 ,但泥质对中 -高孔隙度储层物性影响小。中 -高孔隙度岩样电阻率指数与含水饱和度 (I-Sw)关系曲线与低孔隙度岩样相比 ,差别较大 ,故将孔隙度作为选取含水饱和度解释模型和测井评价的约束条件 ,解释精度和评价级别都有所提高  相似文献   

12.
混合泥质砂岩通用电阻率模型研究   总被引:1,自引:0,他引:1  
宋延杰  石颖  张庆国 《测井技术》2004,28(2):118-123
基于层状泥质与分散泥质砂岩的并联导电,而分散泥质砂岩导电性等效于分散粘土和地层水为一种导电液体的纯砂岩,并考虑到在低地层水电导率(Gw)范围内分散粘土电导率(Ccl)随Gw增大而增大,建立了混合泥质砂岩通用电阻率模型.通过对该模型的影响因素分析,发现泥质分布形式对模型计算的含水饱和度有很大影响;只有Ccl变化时,地层电导率(G1)与有效含水饱和度(Sw)关系曲线的曲率相近;随Sw增大,胶结指数m对Ct与S关系曲线的影响增大,而饱和度指数n对Ct与Sw关系曲线的影响减小.通过2组分散泥质砂岩岩样实验测量数据和1组层状泥质砂岩测井资料的测试,表明该模型既适用于分散泥质砂岩地层解释又适用于层状泥质砂岩地层解释,给出的电阻率模型为通用电阻率模型.利用建立的混合泥质砂岩通用电阻率模型对海拉尔盆地高泥地区的苏1、苏3井进行处理,并将模型计算的含水饱和度与试油结果进行对比,结果表明模型计算的含水饱和度是合理的.本模型适用于高泥地区的泥质砂岩地层解释.  相似文献   

13.
岩石电阻率频散及其对阿尔奇参数的影响   总被引:1,自引:0,他引:1  
邓少贵  张立鹏 《测井技术》1998,22(4):227-230
岩石电阻率存在频散现象,频散性的强弱与地层水矿化度、含水饱和度、阳离子交换容量等有关。当地层水矿化度增高,饱含水岩石电阻率频散性减弱;当含水饱和度及地层水矿化度较低时,频散现象较明显。在其它情况基本相同时,泥质砂岩的阳离子交换容量越大,频散现象越明显。因此,岩石电阻率频散性影响着阿尔奇参数的变化。文中系统介绍了饱和度指数、胶结指数与频率之间的关系,认为实验室进行阿尔奇公式参数的测量应采取多频测量。  相似文献   

14.
含气泥质砂岩频散特性的实验研究   总被引:1,自引:0,他引:1  
根据岩石电性物理分析可知,不同频率范围,岩石复电阻率频散的物理机理不同。低频时,岩石的复电阻率频散现象主要由“有源的”的伽伐尼电流和“无源的”涡旋电流引起的,与位移电流无关。当频率小于10 kHz时,复电阻率测井主要受激发极化效应影响。在12 Hz~100 kHz频率范围内,对不同含水饱和度的含气泥质砂岩进行复电阻率测量,实验结果表明,含气泥质砂岩的复电阻率频散特性与含油泥质砂岩的复电阻率频散特性相同,随着含水饱和度的增大,频散程度降低,因此利用复电阻率测井技术同样可以有效地评价含气泥质砂岩储层。从岩石复电阻率频散特性曲线中可以看出,某一频点的相角和异相电阻率大体和该频点上复电阻率幅值频散特性曲线的斜率成正比关系,即复电阻率幅值随频率变化愈快,相角和异相电阻率绝对值愈大,随着频率的降低,激发极化效应将显著增强。  相似文献   

15.
泥质地层中饱和度指数的确定   总被引:1,自引:1,他引:0  
Archie 公式是测井计算储层含水饱和度的重要依据之一, 但它只适应用于较纯的砂岩储层。 在泥质地层中, 电阻率指数的对数与含水饱和度的对数之间是非线性关系, 即饱和度指数随电阻率指 数的变化而变化, 而且不同孔隙结构、泥质条件下其变化不同。根据毛管理论、统计学原理、积分原理 和体积模型法, 推导出泥质地层饱和度指数与泥质含量、孔隙结构参数及电阻率指数的关系, 并确定 出泥质地层不同条件下的饱和度指数, 才能使利用Archie 公式计算的储层含水饱和度具有较高的准 确性。  相似文献   

16.
砂岩油气层的低电阻率可能是由于富含分散粘土、层状泥质、高束缚水、高矿化度水、骨架导电等因素综合引起的,因此有必要建立一种适用于骨架导电且同时含分散粘土和层状泥质砂岩解释的通用电阻率模型,以提高复杂泥质砂岩储层含水饱和度的解释精度。基于层状泥质与分散粘土砂岩并联导电的观点,而分散粘土砂岩的导电可用粘土包裹颗粒电阻率模型进行描述,从而建立了考虑分散粘土和层状泥质同时存在的含油气泥质砂岩粘土包裹颗粒通用电阻率模型;通过2组分散泥质砂岩岩样实验测量数据和1组层状泥质砂岩测井资料的测试,表明该模型既适用于分散粘土砂岩地层解释又适用于层状泥质砂岩地层解释;利用建立的混合泥质砂岩粘土包裹颗粒电阻率模型,对海拉尔盆地高泥地区的苏1、苏3井进行处理,并将模型计算的含水饱和度与试油结果进行对比,结果表明模型计算的含水饱和度是合理的,故本模型适用于含油气复杂泥质砂岩地层解释。  相似文献   

17.
水淹层地层水电阻率变化规律研究   总被引:3,自引:0,他引:3  
对于注水开发砂岩油田,随着注水强度的增加,储层水的变化由原始油层的束缚水特征逐渐过渡到注入水的特征,注入水与水淹层混合液之间的离子交换作用不再遵循简单的并联模型,相应的水淹层地层水电阻率具有较复杂的变化规律.在分析泥质砂岩注水开发体积模型的基础上,采用一种改进的并联模型,推导出不同注水条件下的混合液地层水电阻率的理论模型,重点对注水开发中、后期水淹层地层水电阻率的变化规律进行了理论分析与模拟,并结合岩心分析与激发极化电位测井解释成果进行应用对比,对水淹机理研究具有一定的指导意义.研究表明,在实际应用选择水淹层混合液电阻率时,可以根据含水饱和度的变化分3个不同的阶段选择不同的混合液电阻率值.  相似文献   

18.
对于低孔低渗、泥质含量较高的泥质砂岩储层,我们提出了一种新的模型来反演地层水电阻率和含水饱和度。它首先对阿尔奇公式进行了泥质校正和粘土附加导电校正,同时采用变m指数部分补偿了低孔低渗的影响,然后利用得到的模型通过规划求解的方法同时反演得到了含水饱和度和地层水电阻率。计算结果与试油资料的对比证实了该方法的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号