首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a novel heterojunction bipolar transistor (HBT) structure, the collector-up tunneling-collector HBT (C-up TC-HBT), that minimizes the offset voltage V/sub CE,sat/ and the knee voltage V/sub k/. In this device, a thin GaInP layer is used as a tunnel barrier at the base-collector (BC) junction to suppress hole injection into the collector, which results in small V/sub CE,sat/. Collector-up configuration is used because of the observed asymmetry of the band discontinuity between GaInP and GaAs depending on growth direction. To minimize V/sub k/, we optimized the epitaxial layer structure as well as the conditions of ion implantation into the extrinsic emitter and post-implantation annealing. The best results were obtained when a 5-nm-thick 5/spl times/10/sup 17/-cm/sup -3/-doped GaInP tunnel barrier with a 20-nm-thick undoped GaAs spacer was used at the BC junction, and when 2/spl times/10/sup 12/-cm/sup -2/ 50-keV B implantation was employed followed by 10-min annealing at 390/spl deg/C. Fabricated 40/spl times/40-/spl mu/m/sup 2/ C-up TC-HBTs showed almost zero V/sub CE,sat/ (<10 mV) and a very small V/sub k/ of 0.29 V at a collector current density of 4 kA/cm/sub 2/, which are much lower than those of a typical GaInP/GaAs HBT. The results indicate that the C-up TC-HBT's are attractive candidates for high-efficiency high power amplifiers.  相似文献   

2.
Next-generation power amplifiers must operate at lower supply voltages without sacrificing linearity or efficiency. GaInP/GaAs double-heterojunction bipolar transistors with GaInP collectors can improve over GaAs single-heterojunction bipolar transistors (HBTs) in power-amplifier applications, based on lower offset voltage, increased breakdown electric field, and absence of saturation charge storage. To best exploit these characteristics, amplifier architectures that employ HBTs in switching mode can be used  相似文献   

3.
A new and interesting InGaP/Al/sub x/Ga/sub 1-x/As/GaAs composite-emitter heterojunction bipolar transistor (CEHBT) is fabricated and studied. Based on the insertion of a compositionally linear graded Al/sub x/Ga/sub 1-x/As layer, a near-continuous conduction band structure between the InGaP emitter and the GaAs base is developed. Simulation results reveal that a potential spike at the emitter/base heterointerface is completely eliminated. Experimental results show that the CEHBT exhibits good dc performances with dc current gain of 280 and greater than unity at collector current densities of J/sub C/=21kA/cm/sup 2/ and 2.70/spl times/10/sup -5/ A/cm/sup 2/, respectively. A small collector/emitter offset voltage /spl Delta/V/sub CE/ of 80 meV is also obtained. The studied CEHBT exhibits transistor action under an extremely low collector current density (2.7/spl times/10/sup -5/ A/cm/sup 2/) and useful current gains over nine decades of magnitude of collector current density. In microwave characteristics, the unity current gain cutoff frequency f/sub T/=43.2GHz and the maximum oscillation frequency f/sub max/=35.1GHz are achieved for a 3/spl times/20 /spl mu/m/sup 2/ device. Consequently, the studied device shows promise for low supply voltage and low-power circuit applications.  相似文献   

4.
Use of WN/sub X/ as the diffusion barrier for interconnect copper metallization of InGaP-GaAs heterojunction bipolar transistors (HBTs) was studied. The WN/sub X/ (40 nm) and Cu (400 nm) films were deposited sequentially on the InGaP-GaAs HBT wafers as the diffusion barrier and interconnect metallization layer, respectively, using the sputtering method. As judged from the data of scanning electron microscopy, X-ray diffraction, Auger electron spectroscopy, and sheet resistance, the Cu--WN/sub X/--SiN and Cu--WN/sub X/--Au structures were very stable up to 550/spl deg/C and 400/spl deg/C annealing, respectively. Current accelerated stress test was conducted on the Cu--WN/sub X/ metallized HBTs with V/sub CE/=2 V, J/sub C/=140 kA/cm/sup 2/ and stressed for 55 h, the current gain (/spl beta/) of these HBTs showed no degradation and was still higher than 100 after the stress test. The Cu--WN/sub X/ metallized HBTs were also thermally annealed at 250/spl deg/C for 25 h and showed no degradation in the device characteristics after the annealing. For comparison, HBTs with Au interconnect metallization were also processed, and these two kinds of devices showed similar characteristics after the stress tests. From these results, it is demonstrated that WN/sub X/ is a good diffusion barrier for the interconnection copper metallization of GaAs HBTs.  相似文献   

5.
Low-frequency noise characteristics of NPN and PNP InP-based heterojunction bipolar transistors (HBTs) were investigated. NPN HBTs showed a lower base noise current level (3.85 /spl times/ 10/sup -17/ A/sup 2//Hz) than PNP HBTs (3.10 /spl times/ 10/sup -16/ A/sup 2//Hz), but higher collector noise current level (7.16 /spl times/ 10/sup -16/ A/sup 2//Hz) than PNP HBTs (1.48 /spl times/ 10/sup -16/ A/sup 2//Hz) at 10 Hz under I/sub C/=1 mA, V/sub C/=1 V. The NPN devices showed a weak dependence I/sub C//sup 0.77/ of the collector noise current, and a dependence I/sub B//sup 1.18/ of the base noise current, while the PNP devices showed dependences I/sub C//sup 1.92/ and I/sub B//sup 1.54/, respectively. The dominant noise sources and relative intrinsic noise strength were found in both NPN and PNP InP-based HBTs by comparing the noise spectral density with and without the emitter feedback resistor. Equivalent circuit models were employed and intrinsic noise sources were extracted. The high base noise current of PNP HBTs could be attributed to the exposed emitter periphery and higher electron surface recombination velocity in P-type InP materials, while the relatively high collector noise current of NPN HBTs may be due to the noise source originating from generation-recombination process in the bulk material between the emitter and the collector.  相似文献   

6.
We report an InP-InGaAs-InP double heterojunction bipolar transistor (DHBT), fabricated using a conventional triple mesa structure, exhibiting a 370-GHz f/sub /spl tau// and 459-GHz f/sub max/, which is to our knowledge the highest f/sub /spl tau// reported for a mesa InP DHBT-as well as the highest simultaneous f/sub /spl tau// and f/sub max/ for any mesa HBT. The collector semiconductor was undercut to reduce the base-collector capacitance, producing a C/sub cb//I/sub c/ ratio of 0.28 ps/V at V/sub cb/=0.5 V. The V/sub BR,CEO/ is 5.6 V and the devices fail thermally only at >18 mW//spl mu/m/sup 2/, allowing dc bias from J/sub e/=4.8 mA//spl mu/m/sup 2/ at V/sub ce/=3.9 V to J/sub e/=12.5 mA//spl mu/m/sup 2/ at V/sub ce/=1.5 V. The device employs a 30 nm carbon-doped InGaAs base with graded base doping, and an InGaAs-InAlAs superlattice grade in the base-collector junction that contributes to a total depleted collector thickness of 150 nm.  相似文献   

7.
Type-II InP/GaAsSb double heterojunction bipolar transistors (DHBTs) were fabricated and microwave power performance was measured. For an InP collector thickness of 150 nm, the DHBTs show a current gain of 24, low offset voltages, and a BV/sub CEO/>6V. The 1.2/spl times/16 /spl mu/m/sup 2/ devices show f/sub T/=205GHz and f/sub MAX/=106GHz at J/sub C/=304 kA/cm/sup 2/. These devices delivered 12.6 dBm to the load at P/sub AVS/=3.3 dBm operating at 10 GHz, yielding a power-added efficiency of 41% and G/sub T/=9.3 dB.  相似文献   

8.
The low-frequency noise characteristics of p-n-p InAlAs/InGaAs heterojunction bipolar transistors (HBTs) were investigated. Devices with various geometries were measured under different bias conditions. The base noise current spectral density (3.11 /spl times/ 10/sup -16/ A/sup 2//Hz) was found to be higher than the collector noise current spectral density (1.48 /spl times/ 10/sup -16/ A/sup 2//Hz) at 10 Hz under low bias condition (I/sub C/=1 mA, V/sub EC/=1 V), while the base noise current spectral density (2.04 /spl times/ 10/sup -15/ A/sup 2//Hz) is lower than the collector noise current spectral density (7.87 /spl times/ 10/sup -15/ A/sup 2//Hz) under high bias condition (I/sub C/=10 mA, V/sub EC/=2 V). The low-frequency noise sources were identified using the emitter-feedback technique. The results suggest that the low-frequency noise is a surface-related process. In addition, the dominant noise sources varied with bias levels.  相似文献   

9.
InP/In/sub 0.53/Ga/sub 0.47/As/InP double heterojunction bipolar transistors (DHBT) have been designed for increased bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 450 GHz f/sub /spl tau// and 490 GHz f/sub max/, which is the highest simultaneous f/sub /spl tau// and f/sub max/ for any HBT. The devices have been scaled vertically for reduced electron collector transit time and aggressively scaled laterally to minimize the base-collector capacitance associated with thinner collectors. The dc current gain /spl beta/ is /spl ap/ 40 and V/sub BR,CEO/=3.9 V. The devices operate up to 25 mW//spl mu/m/sup 2/ dissipation (failing at J/sub e/=10 mA//spl mu/m/sup 2/, V/sub ce/=2.5 V, /spl Delta/T/sub failure/=301 K) and there is no evidence of current blocking up to J/sub e//spl ges/12 mA//spl mu/m/sup 2/ at V/sub ce/=2.0 V from the base-collector grade. The devices reported here employ a 30-nm highly doped InGaAs base, and a 120-nm collector containing an InGaAs/InAlAs superlattice grade at the base-collector junction.  相似文献   

10.
The improvement in the emitter-base leakage current of HBTs has been investigated by the use of an InGaP emitter. InGaP/GaAs n-p-n HBT structures with high C-doped bases, grown by MOCVD, have been fabricated and these devices show Gummel plots with near ideal I-V characteristics (n/sub c/=1.00 and n/sub b/=1.09). Measured current gain remains relatively flat over five decades of collector current and its magnitude is greater than unity at collector current as low as 0.1 mu A. The characteristics of these HBTs were compared with fabricated AlGaAs/GaAs HBTs having similar device structure. The superior performance of the InGaP emitter HBT is demonstrated.<>  相似文献   

11.
We report on the realization of an InGaP-GaAs-based double heterojunction bipolar transistor with high breakdown voltages of up to 85 V using an Al/sub 0.2/Ga/sub 0.8/As collector. These results were achieved with devices with a 2.8 /spl mu/m collector doped to 6/spl times/10/sup 15/ cm/sup -3/ (with an emitter area of 60/spl times/60 /spl mu/m/sup 2/). They agree well with calculated data from a semi-analytical breakdown model. A /spl beta//R/sub SBI/ (intrinsic base sheet resistance) ratio of more than 0.5 by introducing a 150-nm-thick graded Al-content region at the base-collector heterojunction was achieved. This layer is needed to efficiently suppress current blocking, which is otherwise caused by the conduction band offset from GaAs to Al/sub 0.2/Ga/sub 0.8/As. The thickness of this region was determined by two-dimensional numerical device simulations that are in good agreement with the measured device properties.  相似文献   

12.
This letter reports InP/In/sub 0.53/Ga/sub 0.47/As/InP double heterojunction bipolar transistors (DHBTs) employing an N/sup +/ subcollector and N/sup +/ collector pedestal-formed by blanket Fe and patterned Si ion implants, intended to reduce the extrinsic collector-base capacitance C/sub cb/ associated with the device footprint. The Fe implant is used to compensate Si within the upper 130 nm of the N/sup +/ subcollector that lies underneath the base ohmic contact, as well as compensate the /spl sim/1-7/spl times/10/sup -7/ C/cm/sup 2/ surface charge at the interface between the indium phosphide (InP) substrate and the N/sup $/collector drift layer. By implanting the subcollector, C/sub cb/ associated with the base interconnect pad is eliminated, and when combined with the Fe implant and selective Si pedestal implant, further reduces C/sub cb/ by creating a thick extrinsic collector region underneath the base contact. Unlike previous InP heterojunction bipolar transistor collector pedestal processes, multiple epitaxial growths are not required. The InP DHBTs here have simultaneous 352-GHz f/sub /spl tau// and 403-GHz f/sub max/. The dc current gain /spl beta//spl ap/38, BV/sub ceo/=6.0 V, BV/sub cbo/=5.4 V, and I/sub cbo/<50 pA at V/sub cb/=0.3 V.  相似文献   

13.
六边形发射极的自对准InGaP/GaAs异质结具有优异的直流和微波性能.采用发射极面积为2μm×10μm的异质结双极型晶体管,VCE偏移电压小于150mV,膝点电压为0.5V(IC=16mA),BVCEO大于9V,BVCBO大于14V,特征频率高达92GHz,最高振荡频率达到105GHz.这些优异的性能预示着InGaP/GaAs HBT在超高速数字电路和微波功率放大领域具有广阔的应用前景.  相似文献   

14.
Quasiplanar GaInP/GaAs heterojunction bipolar transistors (HBTs) with selective regrowth of the collector contact are reported. Such devices have a planar surface topology which should allow large scale integration. The multilayer HBT structure and the selective regrown collector contact are realised by chemical beam epitaxy (CBE). Cutoff frequency and maximum oscillation frequency of 30 and 25 GHz respectively, have been obtained for devices with 2*15 mu m/sup 2/ emitter-base junction area.<>  相似文献   

15.
Type-II InP/GaAsSb/InP double heterojunction bipolar transistors (DHBTs) with a 15-nm base were fabricated by contact lithography: 0.73/spl times/11 /spl mu/m/sup 2/ emitter devices feature f/sub T/=384GHz (f/sub MAX/=262GHz) and BV/sub CEO/=6V. This is the highest f/sub T/ ever reported for InP/GaAsSb DHBTs, and an "all-technology" record f/sub T//spl times/BV/sub CEO/ product of 2304 GHz/spl middot/V. This result is credited to the favorable scaling of InP/GaAsSb/InP DHBT breakdown voltages (BV/sub CEO/) in thin collector structures.  相似文献   

16.
Small-area regrown emitter-base junction InP/In-GaAs/InP double heterojunction bipolar transistors (DHBT) using an abrupt InP emitter are presented for the first time. In a device with emitter-base junction area of 0.7 /spl times/ 8 /spl mu/m/sup 2/, a maximum 183 GHz f/sub T/ and 165 GHz f/sub max/ are exhibited. To our knowledge, this is the highest reported bandwidth for a III-V bipolar transistor utilizing emitter regrowth. The emitter current density is 6/spl times/10/sup 5/ A/cm/sup 2/ at V/sub CE,sat/ = 1.5 V. The small-signal current gain h/sub 21/ = 17, while collector breakdown voltage is near 6 V for the 1500-/spl Aring/-thick collector. The emitter structure, created by nonselective molecular beam epitaxy regrowth, combines a small-area emitter-base junction and a larger-area extrinsic emitter contact, and is similar in structure to that of a SiGe HBT. The higher f/sub T/ and f/sub max/ compared to previously reported devices are achieved by simplified regrowth using an InP emitter and by improvements to the regrowth surface preparation process.  相似文献   

17.
Improved power linearity of InGaP/GaAs heterojunction bipolar transistors (HBTs) with collector design is reported. The collector design is based on nonuniform collector doping profile which is to employ a thin high-doping layer (5/spl times/10/sup 17/ cm/sup -3//200 /spl Aring/) inside the collector (1/spl times/10/sup 16/ cm/sup -3//7000 /spl Aring/). The additional thin high-doping layer within the collector shows no obvious effects and impacts in dc characteristics and device fabrication if the layer was inserted close to the subcollector. For an HBT with a thin high-doping layer being inserted 4000 /spl Aring/ from the base-collector junction, the experimental result on third-order intermodulation demonstrates the significant reduction by as large as 9 dBc and improved IIP3 by 5 dB under input power of -10 dBm at frequency of 1.8 GHz.  相似文献   

18.
It is usual to say that power GaInP/GaAs heterojunction bipolar transistors (HBTs) have many advantages for power amplification at microwave frequencies, because of their high gain and high power density. Furthermore, the possibility of controling the base biasing conditions (voltage, current, self-bias control) compared to a field-effect transistor offers additive degrees of freedom to make a tradeoff between linearity and power-added efficiency. Nevertheless existing devices are limited because of the relatively low breakdown voltage whereas high collector voltage swings are required to achieve high power. This drawback makes them not appropriate for use in the next generation of mobile communication base station or radar systems. Silicon technologies such as LDMOS and III-V devices (MESFET and HFET) present competitive performances in term of high power level but for medium power added efficiency. Important improvements have been made in recent years which make possible large breakdown voltages for GaInP/GaAs HBTs. Breakdown value close to 67 V has been achieved. The aim of this work is to significantly improve the modeling of the breakdown voltage on this type of transistor. Furthermore, the in depth characterization and modeling of self-heating effects have been greatly improved in order to improve thermal management solutions which enable us to enhanced design solutions of HBT high power amplifiers.  相似文献   

19.
This work reports the development of high power 4H-SiC bipolar junction transistors (BJTs) by using reduced implantation dose for p+ base contact region and annealing in nitric oxide of base-to-emitter junction passivation oxide for 2 hours at 1150/spl deg/C. The transistor blocks larger than 480 V and conducts 2.1 A (J/sub c/=239 A/cm/sup 2/) at V/sub ce/=3.4 V, corresponding to a specific on-resistance (R/sub sp on/) of 14 m/spl Omega/cm/sup 2/, based on a drift layer design of 12 /spl mu/m doped to 6/spl times/10/sup 15/cm/sup -3/. Current gain /spl beta//spl ges/35 has been achieved for collector current densities ranging from J/sub c/=40 A/cm/sup 2/ to 239 A/cm/sup 2/ (I/sub c/=2.1 A) with a peak current gain of 38 at J/sub c/=114 A/cm/sup 2/.  相似文献   

20.
N-p-n InGaP/GaAs heterojunction bipolar transistors (HBTs) with compositionally graded In/sub x/Ga/sub 1-x/As (Be doped) bases have been successfully grown by solid-source molecular beam Epitaxy (SSMBE) using a gallium phosphide (GaP) decomposition source. In this paper, the dc and RF characteristics of HBTs with different indium mole fractions in the graded In/sub x/Ga/sub 1-x/As base (x:0 /spl rarr/ ;0.1 and x:0 /spl rarr/ 0.05) are measured to investigate optimum-grading profiles. The measured average current gains, /spl beta/s of a control sample, a 10% graded-base sample and a 5% graded-base sample, are 162, 397 and 362, respectively. To our knowledge, these current gains are the highest values ever reported in compositionally graded-base InGaP/GaAs HBTs with a base sheet resistance R/sub sh/ of /spl sim/200 /spl Omega//sq establishing a new benchmark for InGaP/GaAs HBTs. Furthermore, these compositionally graded-base HBTs show higher unity current/gain cutoff frequency, f/sub T/ and maximum oscillation frequency, f/sub max/. Compared to the control sample with the same base thickness, the base transit time /spl tau//sub B/ of the graded sample is reduced by /spl sim/15% to /spl sim/20% by the induced built-in potential, resulting in an increase of f/sub max/ from 16 to 18.5 GHz in a device with an emitter size of 10/spl times/10 /spl mu/m/sup 2/. Additionally, for the 5% graded-base sample, with a 5/spl times/5 /spl mu/m/sup 2/ emitter region, f/sub T/ and f/sub max/ are 16.3 and 33.8 GHz, respectively, under low-level collector current. These results demonstrate that InGaP/GaAs HBTs with In/sub x/Ga/sub 1-x/As graded-base layers (x:0 /spl rarr/ 0.05) have the potential for high-speed analogue to digital converters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号