共查询到16条相似文献,搜索用时 78 毫秒
1.
经典Retinex算法假设场景中光照是平缓变化的,当光照变化比较强烈时,易产生“光晕”现象,为了提高光照条件变化下的人脸识别率,提出一种改进单尺度Retinex的光照人脸识别方法。采用双曲正切函数代替Retinex的对数函数对人脸图像进行亮度和对比度非线性增强;利用双边滤波代替Retinex的高斯滤波消除“光晕”,采用Retinex消除光照不利影响,采用K近邻算法建立人脸分类器。结果表明,改进Retinex降低了时间复杂度,图像增强效果优于同类算法,提高了人脸识别率,很好地解决了“光晕”问题,具有光照鲁棒性,可适用于光照变化较强条件下的人脸识别。 相似文献
2.
基于加权分块稀疏表示的光照鲁棒性人脸识别 总被引:1,自引:0,他引:1
针对光照变化对人脸识别的效果带来严重影响,提出一种对人脸识别的光照变化具有鲁棒性的方法,即基于加权分块稀疏表示的人脸识别方法。该方法首先对人脸图像进行离散余弦变换(DCT),通过去除 DCT 系数的低频部分来移除光照变化分量。通过反离散余弦变换得到光照归一化后的人脸图像,将人脸图像分块,独立地对每个子块作基于稀疏表示的分类,并对每个子块的分类结果进行加权投票得出测试人脸图像的类别。在 Yale B、extended-Yale B、CMU-PIE 和 FERET 人脸库上进行实验,实验结果表明该方法适用于光照鲁棒的人脸识别。 相似文献
3.
为了提高在光照变化条件下人脸图像的识别率,针对Retinex算法处理人脸光照图像产生的识别率不高的问题,提出了一种基于稀疏差分和Mean-Shift滤波的Retinex算法.对人脸图像增加部分使用稀疏差分,利用Mean-Shift滤波代替高斯滤波对光照进行估计,通过采用Yale B人脸库、CMU-PIE人脸图像库和AR人脸图像库对算法性能进行测试,该算法具有很好的光照鲁棒性,有效地提高了人脸的识别率. 相似文献
4.
当前的人脸识别算法在理想环境下的识别正确率高,自适应能力强;但是在非理想环境下,人脸识别正确率急剧下降。为了提高人脸识别结果的稳定性,设计了稀疏表示和支持向量机相融合的非理想环境人脸识别算法。首先,提取非理想环境人脸的特征,并构建非理想环境人脸识别的特征字典;然后,采用特征字典对非理想环境人脸识别训练样本和测试样本进行处理,构建非理想环境人脸识别的学习样本;最后,采用支持向量机建立非理想环境人脸识别的分类器来对非理想环境人脸进行识别,并采用多个标准人脸数据库对所提非理想环境人脸识别算法进行测试。文中算法的非理想环境人脸识别正确率高,误识率和拒识率低,相对于其他人脸识别算法,其更适应环境的变化,对非理想环境人脸识别的整体效果更优,而且提高了非理想环境人脸识别的效率,具有十分明显的优越性。 相似文献
5.
为了提高人脸的识别率和识别速度及其识别的鲁棒性,提出了基于拓展稀疏表示模型和LC-KSVD(Label Consist K-SVD)的人脸识别算法。针对字典学习中只包含表示能力没有包含类别信息的问题,在原始的稀疏表示模型中添加了残差向量作为系数修正向量,使得拓展稀疏表示模型具有更强的鲁棒性;在字典学习中添加稀疏编码和分类器参数约束项,通过字典学习同时更新稀疏编码和分类器参数,使字典中包含很好的表示能力和判别分类能力。实验结果表明,基于拓展稀疏表示模型和LC-KSVD的人脸识别具有高识别率和低识别速度,并且有很好的鲁棒性。 相似文献
6.
刘晓飞 《计算机应用与软件》2014,(10)
针对传统的稀疏表示分类算法中面部对齐受限而影响人脸识别率的问题,提出一种基于约束采样和面部对齐的稀疏表示分类算法。首先通过使用约束采样对训练图像进行预先标注得到固定脸特征;然后结合图像的纹理信息和形状特征进行面部对齐及特征提取;最后计算出测试样本与各个训练样本之间的相似度,利用稀疏表示分类器完成人脸的识别。在AR、CAS-PEAL及扩展YaleB人脸数据库上的实验验证了算法的有效性及鲁棒性。实验结果表明,约束采样和面部对齐的组合大大提高了人脸识别率,相比几种较为先进的鲁棒人脸识别算法,该算法取得了更好的识别效果。 相似文献
7.
范自柱 《计算机工程与应用》2017,53(9):1-4
经典的稀疏表示分类(Sparse Representation for Classification,SRC)算法是一种基于[L1]范数最小化问题,它在很多应用场合都能取得很好的分类效果,是目前备受关注的一类识别算法。然而,传统的SRC算法在求解[L1]范数最小化问题时,往往计算效率比较低。为有效解决这个问题,提出了一种快速有效的分类算法,它利用坐标下降方法来实现SRC算法。该方法既可以显著地提高计算效率,又可取得较好的分类结果。在不同人脸库上的实验表明,所提的算法具有良好的应用前景。 相似文献
8.
人脸识别的主要难度在于,受到光照变化、表情变化以及遮挡的影响,会使得采集的不同人的人脸图像具有相似性。为有效解决基于稀疏表示的分类算法(Sparse Representation-based Classification,SRC)在人脸训练样本不足时会导致识别率降低和稀疏表示求解效率较低的问题,提出了基于判别性低秩分解与快速稀疏表示分类(Low Rank Recovery Fast Sparse Representation-based Classification,LRR_FSRC)的人脸识别算法。利用低秩分解理论得到低秩恢复字典以及稀疏误差字典,结合低秩分解和结构不相干理论,训练出判别性低秩类字典和稀疏误差字典,并把它们结合作为测试时所用的字典;用坐标下降法来求解稀疏系数以提高了计算效率;根据重构误差实现测试样本的分类。在YALE和ORL数据库上的实验结果表明,提出的基于LRR_FSRC的人脸识别方法具有较高的识别率和计算效率。 相似文献
9.
针对人脸识别中的光照变化问题,利用随机投影对传统稀疏表示分类器进行改进,提出一种基于随机投影与加权稀疏表示残差的光照鲁棒人脸识别方法。通过对人脸图像进行光照规范化处理,尽量消除人脸图像上的恶劣光照,取得经光照校正的人脸样本后进行多次随机空间投影,进一步丰富样本的光照不变特征,以减小光照变化对人脸识别带来的影响。在此基础上,对利用单一残差分类的传统稀疏表示分类方法进行改进,样本经过多次随机投影和稀疏表示会产生多个样本特征和重构残差,利用样本特征的能量来确定各个重构残差的融合权值,最终得到一种稳定性和可靠性更强的加权残差。在 Yale B 和 CMU PIE 两个光照变化较大的人脸库上的实验结果表明,改进的方法具有较强的光照鲁棒性。与传统稀疏表示方法相比,本文提出的方法在Yale B人脸库上两组实验的平均识别率分别提高了25.76%和46.39%,在CMU PIE上的平均识别率提高了10%左右。 相似文献
10.
11.
对稀疏表示在人脸识别中的应用进行了研究,提出了人脸识别的非负稀疏表示方法和采样方法.提出了非负稀疏表示的乘性迭代算法,分析了该方法与非负矩阵分解的联系,设计了基于非负稀疏表示的分类算法.在仿射传播算法的基础上,提出了人脸数据集的采样方法,并在人脸图像集上进行了实验.与稀疏表示相比,非负稀疏表示在计算复杂度和鲁棒性上具有优越性;与随机采样方法相比,该采样方法具有较高的识别精度. 相似文献
12.
可变光照和有遮挡人脸识别是人脸识别问题中的一个难点。受到鲁棒主成分分析法(RPCA)和稀疏表示分类法(SRC)的启发,提出一种基于低秩表示(LRR)中稀疏误差图像的可变光照有遮挡人脸识别算法。在训练阶段,利用LRR计算每类人脸低秩数据矩阵,在此基础上求解每类人脸图像低秩映射矩阵,通过各类低秩映射矩阵将未知人脸图像投影得到每类下的低秩数据矩阵和稀疏误差矩阵,为了有效提取稀疏误差图像中的鉴别信息,分别对稀疏误差图像进行边缘检测和平滑度分析,设计了基于两者加权和的类别判据。在Extended Yale B和AR两个数据库上进行了详细的实验分析,实验结果与其它算法相比较有明显提高,证实了所提算法的有效性和鲁棒性。 相似文献
13.
由于稀疏表示方法在人脸分类算法中的成功使用,在此基础上提出了一种更为有效的基于稀疏表示(SRC)和弹性网络相结合的分类方法。为了加强样本间的协作表示能力以及增强处理强相关性变量数据的能力,基于迭代动态剔除机制,提出一种结合弹性网络的稀疏分解方法。通过采用训练样本的线性组合来表示测试样本,并运用迭代机制从所有样本中剔除对分类贡献度较小的类别和样本,采用Elastic Net算法来进行系数分解,从而选择出对分类贡献度较大的样本和类别,最后根据计算相似度对测试样本进行分类。在ORL、FERET和AR三个数据集进行了许多实验,实验结果显示算法识别率分别达到了98.75%、86.62%、99.72%,表明了所提算法的有效性。所提算法相比LASSO和SRC-GS等方法,在系数分解过程中增强了处理高维小样本和强相关性变量数据的能力,突出了稀疏约束在该算法中的重要性,具有更高的准确性和稳定性,能够更加有效地适用于人脸分类。 相似文献
14.
受启发于人脸近似对称的先验知识,提出一种基于对称Gabor特征的稀疏表示算法并成功运用于人脸识别。首先把人脸图像进行镜像变换得到其镜像图像,进而将人脸分解为奇偶对称脸。在奇偶对称脸上分别提取Gabor特征,得到Gabor奇偶对称特征。通过一个加权因子,将奇偶特征融合生成新的特征。最后用这种新的特征构成超完备字典进行稀疏表示人脸分类。在人脸数据库AR和FERET上的实验结果表明所提算法在人脸有表情、姿势和光照变化情况下仍能获得较高的识别率。 相似文献
15.
为了提高光照变化条件下的人脸识别率,针对Retinex算法处理人脸光照图像时易产生“光晕”难题,提出了一种基于Mean-Shift滤波的Retinex算法,并应用于人脸识别中的光照预处理。对人脸图像进行非线性增强;利用Mean-Shift滤波代替高斯滤波对光照估计,解决传统Retinex算法中存在的“光晕”难题。采用Yale B人脸库对算法性能进行测试,结果表明,该算法能够很好地抑制“光晕”现象的发生,具有光照鲁棒性,提高了人脸的识别率。 相似文献
16.
程勇 《计算机工程与应用》2017,53(10):21-26
基于光照估计的光照不变量提取是提高复杂光照人脸识别性能的一种有效方法。以往算法仅考虑光照缓慢变化特性从人脸图像中估计光照,无法获取准确的光照和光照不变量。综合考虑图像的成像原理、光照缓慢变化特性和复杂照明环境,结合图像融合和平滑滤波,提出一种有效的人脸图像光照估计、光照不变量提取方法。所提算法能较好地处理阴影边缘问题,提取含有丰富面部细节特征、更接近于人脸本征的光照不变量。复杂光照Yale B+和CAS-PEAL-R1人脸库上的实验结果表明所提算法具有高效性。 相似文献