首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
采用化学氧化聚合法,以石墨烯(RGO)为掺杂剂,吡咯(Py)和二苯胺磺酸(SD)共聚制备了导电复合材料。通过正交实验和分散性实验确定了最佳合成条件为:以FeCl3・6H2O为氧化剂,氧化剂与单体的摩尔比为1:1,Py与SD的摩尔比为7:3(总量为0.01 mol),RGO添加量为0.05 g;在此条件下制备的复合材料电导率为12.05 S/cm,且具有良好的水分散性。用傅里叶变换红外(FTIR)光谱和X射线衍射(XRD)对其结构进行了表征,并使用热重分析仪(TGA)对复合材料的热稳定性进行了测试。结果表明,SD结构单元成功嵌入聚吡咯(PPy)的分子链中,RGO的掺杂使复合材料电导率和热稳定性都有了明显提升。将复合材料作为导电填料加入到水性聚氨酯中,考察了涂层的抗静电性能和机械性能,在添加量为4%时,涂层的综合性能较好,涂层表面电阻率可达8.65×107 Ω。  相似文献   

2.
刘淑玲  任静 《应用化工》2019,(1):104-108
分别采用物理球磨混合法、化学原位聚合法和化学原位聚合-还原法制备了聚吡咯/氧化石墨烯混合物、聚吡咯/氧化石墨烯(PPy/GO)和聚吡咯/还原氧化石墨烯(PPy/RGO)复合材料。通过三电极测试其电化学性能(循环伏安、恒流充放电和交流阻抗)。结果表明,通过化学原位聚合法制备的PPy/GO(304. 5 F/g)比电容远高于物理混合(16 F/g)和聚吡咯/还原氧化石墨烯(126. 4 F/g)。化学法原位聚合法制备PPy/GO最佳条件是冰浴条件下和加入表面活性剂对羟基苯磺酸钠。并通过X射线衍射(XRD)和扫描电子显微镜(SEM)对化学原位制备的PPy/GO组成、结构和形貌进行了表征。  相似文献   

3.
通过原位聚合法制备出聚吡咯/石墨烯(PPy/GE)复合材料。用红外光谱(FT-IR)、扫描电镜(SEM)、透射电镜(TEM)等分析手段对复合材料的结构和形貌进行表征,发现聚吡咯均匀地包覆在石墨烯表面。循环伏安测试表明复合材料对电极对I-/I3-电解质氧化还原体系具有较好的催化能力。电化学交流阻抗测试结果说明掺入聚吡咯后可有效降低石墨烯对电极的电荷转移阻抗。组装成染料敏化太阳能电池(DSSCs),在AM 1.5(100mW.cm-2)的模拟太阳光照射下,得到4.12%的光电转换效率。  相似文献   

4.
采用石墨烯/聚吡咯(r GO/PPY)复合物制备超级电容器,以弥补二者各自的不足。采用改进Hummers法制备出氧化石墨烯(GO)。利用水合肼还原法将GO还原后得到r GO,同时采用电化学聚合法制备出PPY。最后,用电沉积法直接在不锈钢网上制备出r GO/PPY复合物。得到的复合材料的比电容为209.04 F/g,显著高于r GO的比电容(52.42 F/g)。另外,循环1 000次后,复合材料的比电容下降18.1%,低于PPY(36.3%)。  相似文献   

5.
首先对石墨进行氧化处理制备氧化石墨(GO),然后对GO进行超声处理得到氧化石墨烯(GOs),并通过共混法制备了水性聚氨酯(WPU)/GOs复合材料。讨论了超声分散以及GOs加入量对WPU/GOs复合材料力学性能和热稳定性的影响。结果表明,经过超声分散的复合材料的力学性能比未超声分散的好;随着GOs含量的增加,复合材料的拉伸强度先增大后减小,断裂伸长率逐渐减小;加入质量分数0.50%的GOs,其WPU/GOs复合材料的热分解温度可提高44.7℃,明显提高WPU的热稳定性。  相似文献   

6.
利用超声波的分散、粉碎、活化、引发等多重作用以及吡咯单体与石墨烯的π-π相互作用,在实现石墨烯均匀分散的同时,使吡咯单体在石墨烯表面进行原位聚合反应,制备出聚吡咯/石墨烯(PPy/RGO)纳米复合材料。运用扫描电子显微镜(SEM)、红外光谱(FTIR)、X射线光电子能谱(XPS)等测试手段对PPy/RGO纳米复合材料的表面特性、化学组成及结构等进行了表征。在此基础上,研究了制备过程中的各种因素(如氧化剂、反应温度、石墨烯含量等)对PPy/RGO纳米复合材料产率及导电性能的影响。并采用热重分析(TGA)和导电测试分析了石墨烯含量对其热稳定性及电导率的影响。  相似文献   

7.
本文利用电化学沉积法将掺杂有氧化石墨烯的聚吡咯沉积在活性碳布上,获得了一系列不同氧化石墨烯掺杂程度的氧化石墨烯改性聚吡咯-活性碳布柔性复合材料.采用电化学方法研究复合材料构筑的超级电容器的赝电容行为.研究表明掺杂氧化石墨烯后的复合物构筑的超级电容器电容性能有显著提升.随着氧化石墨烯掺杂量的提高,复合物的质量比电容先增加...  相似文献   

8.
以自制的GO(氧化石墨烯)为填料,WPU(水性聚氨酯)为基体,采用溶液共混和流延成膜法制备了GO/WPU复合薄膜。着重考察了GO含量对GO/WPU复合薄膜力学性能和导热性能等影响。研究结果表明:随着GO含量的增加,复合薄膜的拉伸强度增强、导热系数增大;当w(GO)=4%(相对于复合薄膜质量而言)时,复合薄膜的拉伸强度(20.6 MPa)相对最大、导热系数[为0.208 W/(m·K)]相对最高[这是由于GO均匀分散在PU(聚氨酯)基体中,形成了连续褶皱状网络结构的缘故]。  相似文献   

9.
以氧化石墨烯(GO)作为前体,通过氨丙基三乙氧基硅烷将氧化锡锑(ATO)锚定到氧化石墨烯片层上,制备得到氧化锡锑-氧化石墨烯纳米复合材料(ATO/GO)。通过XRD,XPS和SEM对其结构进行测试。并研究了ATO/GO含量对水性环氧涂料(AE)防腐及抗静电性能的影响。结果表明:随ATO/GO含量的增加,复合涂料表面电阻降低,ATO/GO含量大于3%时,表面电阻降低至108Ω以下,达到了抗静电的使用要求;当ATO/GO含量为3%时,漆膜水蒸气透过率降低至(62.13g/m2 h),具有最低的腐蚀电流密度(Icorr=3.73E-9 A/cm2)和最高的腐蚀电压(Ecorr=-0.19926v),防腐效率与空白样相比提高了99.95%。  相似文献   

10.
利用化学氧化法原位聚合制备了聚苯胺(PANI)/氧化石墨烯(GO)接枝复合材料。透射电子显微镜表明,PANI纳米颗粒均匀地分布在GO的表面;通过UV-vis光谱证实了GO和PANI之间存在着强烈的相互作用;充放电测试表明,PANI/GO纳米复合材料具有良好的电荷储存特性,最高比电容可达575 F/g。由于与GO之间的化学结合作用,PANI的充放电循环稳定性得到明显提高。  相似文献   

11.
以聚乙烯醇(PVA)和自制的羊毛角蛋白(WK)为原料,硼酸为交联剂,将WK与质量分数为15%的PVA溶液按质量比为2:10混合,制得含固体质量分数约为15%的WK/PVA共混纺丝原液,采用湿法纺丝的方法制备WK/PVA复合纤维,研究了复合纤维的结构与性能。结果表明:WK/PVA复合纤维的表面均出现皱纹,其横截面呈椭圆形;硼酸交联对WK/PVA复合纤维的形貌无明显影响,但使复合纤维的耐水性能得到提升;傅里叶变换红外光谱、X射线衍射光谱和热重分析结果证明了交联的发生,硼酸与WK和PVA大分子的交联改变了复合纤维的结晶结构,增强了大分子间的作用力,却使WK/PVA复合纤维的热稳定性降低。  相似文献   

12.
Graphene oxide (GO) was well dispersed in poly(vinyl alcohol) (PVA) diluted aqueous solution, and then the mixture was electrospun into GO/PVA composite nanofibers. Electron microscopy and Raman spectroscopy on the as‐prepared and calcined samples confirm the uniform distribution of GO sheets in the nanofibers. The thermal and mechanical properties of the nanofibers vary considerably with different GO filler contents. The decomposition temperatures of the GO/PVA composite nanofiber dropped by 38–50°C compared with pure PVA. A very small loading of 0.02 wt % GO increases the tensile strength of the nanofibers by 42 times. A porous 3D structure was realized by postcalcining nanofibers in H2. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
In this study, three sets of different bilayered composite coatings of pyrrole and N-substituted pyrroles were synthesized by a layer-by-layer approach on copper surface and corrosion performances of the synthesized materials were compared. Electrodepositions of poly(N-methylpyrrole), poly(N-phenylpyrrole), and poly(N-methoxyphenylpyrrole) were performed in nonaqueous medium on a poly(pryrrole)-coated copper surface using cyclic voltammetry. The morphologies of the resulting bilayered composite coatings of poly(pyrrole)/poly(N-methylpyrrole), poly(pyrrole)/poly(N-phenylpyrrole), and poly(pyrrole)/poly(N-methoxyphenylpyrrole) were investigated by scanning electron microscopy. Stabilities of a doping-dedoping process of the composites were determined from the cyclic voltammetric study of the bilayer-coated electrodes in a monomer-free solution. Corrosion performances of the bilayer composite-coated and uncoated copper electrodes were investigated in 0.1 M H2SO4 solution using open circuit potential–time (E ocpt) curves, anodic polarization, and electrochemical impedance spectroscopy. All the investigated bilayered coatings gave significant enhancement in the corrosion resistance of copper, compared to the single poly(pyrrole) coating. Stability and corrosion tests revealed that the composite material poly(pyrrole)/poly(N-methoxyphenylpyrrole) exhibited higher electrochemical stability and corrosion resistant behavior than the other bilayered composite coatings.  相似文献   

14.
以石墨烯和纳米碳酸钙为填料,先对其进行预分散,再通过与氯乙烯单体的原位聚合反应制备了石墨烯/纳米碳酸钙/PVC复合树脂(以下简称复合树脂),观察了树脂颗粒的微观形貌,评估了实验室用10 L聚合釜的性能,评价了复合树脂的综合性能,同时考察了石墨烯用量对复合树脂热稳定性的影响。结果表明:采用10 L聚合釜制得的复合树脂的颗粒规整度不高,但热稳定性得到显著提高,在韧性大幅提高的同时强度也得到改善;石墨烯的适宜用量为0.2%(以氯乙烯单体的质量为100%计)。  相似文献   

15.
Graphene (GE)‐based nanocomposites are emerging as a new class of materials that hold promise for many applications. In this article, we present a general approach for the preparation of GE/poly(vinyl alcohol) (PVA) nanocomposites. The basic strategy involved the preparation of graphite oxide from graphite, complete exfoliation of graphite oxide into graphene oxide sheets, followed by reduction to GE nanosheets, and finally, the preparation of the GE/PVA nanocomposites by a simple solution‐mixing method. The synthesized products were characterized by X‐ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetry, and differential scanning calorimetry analysis. The GE nanosheets were well dispersed in the PVA matrix, and the restacking of the GE sheets was effectively prevented. Because of the strong interfacial interaction between PVA and GE, which mainly resulted from the hydrogen‐bond interaction, together with the improvement in the PVA crystallinity, the mechanical properties and thermal stability of the nanocomposites were obviously improved. The tensile strength was increased from 23 MPa for PVA to 49.5 MPa for the nanocomposite with a 3.25 wt % GE loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
先采用改进的Hummers法制备氧化石墨烯(GO),并使用N?(β?氨乙基)?γ?氨丙基三甲氧基硅烷(KH792)对其改性而得到改性石墨烯(KH792GO),再采用化学氧化法将苯胺直接聚合到KH792GO表面,制备出了分散性优异的改性石墨烯接枝聚苯胺(KH792GO@PANI).将KH792GO@PANI作为功能填料加...  相似文献   

17.
Composites of thermoplastic polyurethane (TPU) with poly(diphenylamine) (PDPA) were prepared by entrapping diphenylamine (DPA) molecules into the matrix of TPU and polymerizing DPA within the TPU matrix. Swelling rate of the parent TPU and the composites in 1M LiClO4 in propylene carbonate solution were compared to understand the influence of the presence of PDPA in the composite in altering the morphology, conductivity, and electrolyte behavior. The nitrogen atoms in the PDPA interact and are likely to form hydrogen bonding with the carbonyl and ether groups in TPU. As a result, different morphology, thermal, and impedance behavior were witnessed for the composites in comparison to TPU. Results from differential scanning calorimetry, scanning electron microscopy (SEM), thermogravimetric analysis, and ac impedance measurements were obtained as supporting evidences. An increase in glass transition temperature for the composite in comparison to TPU infers the increase in phase mixing of soft and hard segment of TPU. The SEM micrograph shows the presence of fibrillar morphology of PDPA molecules in the composite. The ionic conductivity of the swelled composite was 1‐fold higher than that of pure TPU. A schematic representation showing the interaction of PDPA molecules with TPU is presented. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 611–617, 2006  相似文献   

18.
Poly(pyrrole-co-N-methyl pyrrole) copolymer and poly(pyrrole)/poly(N-methyl pyrrole) bilayer composites were electrochemically synthesized on copper by cyclic voltammetry from aqueous solution of 0.3 M oxalic acid and 0.1 M monomer. Synthesis of copolymers were performed with different monomer feed ratios (pyrrole:N-methyl pyrrole, 8:2, 6:4, 5:5, 4:6 and 2:8) and in order to determine the copolymer, which has the best corrosion performance, anodic polarization was applied to copolymer coated samples. It was found that the performance of coatings was strongly dependent to the monomer feed ratio and the copolymer synthesized with 8:2 concentration ratio showed the most protective property compared to others. Bilayer of poly(pyrrole)/poly(N-methyl pyrrole) was also synthesized to compare the anticorrosive properties. Polymer films were characterized by ATR-FTIR spectroscopy and SEM techniques. Corrosion behavior of polymer composites was investigated in 0.1 M H2SO4 solution by anodic polarization and electrochemical impedance spectroscopy. Different approaches such as phase angle at high frequency and areas under Bode plots were used to evaluate corrosion performances of the coatings. Copolymer and bilayer coatings were found to have higher protection effect than single polypyrrole coatings. Moreover, bilayer coating exhibited better protection efficiency than copolymer coating against corrosion of copper when the obtained results were compared.  相似文献   

19.
采用熔融共缩聚反应法合成聚(丙三醇-癸二酸-柠檬酸)酯(PGSC)弹性体,再采用半原位聚合和研磨分散的方法制备多壁碳纳米管(MWCNT)/PGSC复合材料,并对复合材料的性能进行研究.结果表明,MWCNT对PGSC的玻璃化温度影响不大;随着MWCNT用量的增大,MWCNT/PGSC复合材料的弹性模量和拉伸强度总体增大,溶胀度和吸水率逐渐减小;当MWCNT用量达到或超过1份时,与PGSC相比,MWCNT/PGSC复合材料的弹性模量和拉伸强度较大,降解速率较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号