首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用纳米压痕和峰值力纳米力学模量成像技术(PF-QNM)对碳纤维/聚醚醚酮(T300/PEEK)复合材料各组分原位力学性能进行测试,并对复合材料界面结构及性能定量表征。结果表明,树脂基体、界面、碳纤维区域的弹性模量和硬度均呈梯度上升趋势,且纤维和树脂复合后的原位弹性模量与其非在位性能相比,分别下降和上升,说明高模量的纤维对周围树脂起到一定的强化作用。两种方法测得树脂基体平均弹性模量分别为5.4、4.1 GPa,测试结果分散度较小,与其宏观模量数值较为接近;研究显示,PF-QNM技术具有纳米级横向分辨率,测得T300/PEEK的界面厚度为(73.5±3.8)nm。  相似文献   

2.
结合化学气相沉积(CVD)和前驱体浸渍裂解工艺,分别以丙烯、糠酮树脂和煤沥青为前驱体制备了密度在1.85g/cm3以上的三维炭/炭(C/C)复合材料,对比研究了沥青炭、热解炭+沥青炭以及热解炭+树脂炭结构(分别为A、B、C组)的等三种不同炭基体C/C复合材料的增密效率与力学性能,采用排水法表征C/C复合材料的孔隙率及密度,利用扫描电镜进行炭基体的微观结构表征,采用万用电子力学试验机进行拉伸强度、压缩强度、剪切强度等力学性能表征。结果表明,在热解炭质量含量相同的前提下,树脂浸渍裂解增密速率低于沥青浸渍裂解工艺,树脂炭基体孔隙率低于沥青炭基体。不同炭基体结构的C/C复合材料力学性能次序为:热解炭+树脂炭双元炭基体最高,纯沥青炭基体次之,热解炭+沥青炭双元炭基体最低,分析原因为热解炭与树脂炭双元炭基体的界面结合强度高,而沥青炭为混乱无序碳结构,热解炭和沥青炭双元炭基体界面结合强度弱,因此力学强度最低。  相似文献   

3.
采用等温CVI工艺制备出5种不同炭纳米纤维含量(质量分数分别为0,5%,10%,15%和20%)的炭/炭复合材料。发现添加炭纳米纤维的炭/炭复合材料具有很高的力学性能,在加入炭纳米纤维为5%时,相对于没有添加炭纳米纤维的炭/炭复合材料,弯曲强度增大了76.3%,弹性模量增大了55.5%,但添加量增大到20%时,强度和模量都逐渐降低。  相似文献   

4.
使用炭毡为增强体分别制备了热解炭基、树脂炭基、沥青炭基和热解炭/树脂炭双基体、树脂炭/沥青炭双基体C/C复合材料,比较研究了复合材料的电导率与不同先驱体含量的关系。结果表明,不同前驱体C/C复合材料电导率有较大的差异,热解炭基C/C复合材料的电导率是沥青炭基C/C复合材料和树脂炭基C/C复合材料电导率近3倍,热解炭和沥青炭双基体C/C复合材料的电导率符合简单并联混合法则,树脂炭和沥青炭双基体C/C复合材料的电导率随树脂炭质量分数的增加而减小。  相似文献   

5.
雷帆  温彤  吴诗仁 《硅酸盐通报》2012,31(2):426-430
本文对材料纳米力学性能测试方法进行了研究,重点分析了颗粒材料纳米压痕测试的原理和方法.针对纳米压痕测试需求,设计了一种简易制样方法,实测了泥沙粒子表面硬度和弹性模量.并利用应变式直剪仪测试了泥沙颗粒表面摩擦性能.结果表明,泥沙颗粒表面纳米硬度及弹性模量分别为1.94 GPa和30.57 GPa,颗粒表面摩擦系数约为0.65.纳米压痕及直剪试验提供了丰富的颗粒材料近表面弹塑形变形和摩擦信息,是评价泥沙颗粒力学及摩擦性能的有效方法.  相似文献   

6.
热解炭的微观结构及其测试方法   总被引:2,自引:0,他引:2  
主要介绍了利用正交偏光显微镜(PLM)、X射线衍射(XRD)、透射电镜(TEM)和喇曼光谱(RS)等测试方法,对采用化学气相沉积(CVD)法制备的C/C复合材料的热解炭的表面微观形貌、沉积炭层间距d002、微晶尺寸Lc及其石墨化度等参数进行表征和测量,从而判断沉积的热解炭的织构类型(光滑层、粗糙层和各向同性炭),并且分析了上述各种测试手段的优缺点。  相似文献   

7.
纳米压痕技术对比研究DNAN和TNT晶体的微观力学性能   总被引:1,自引:0,他引:1  
通过溶剂挥发法制备了DNAN和TNT晶体;利用纳米压痕技术研究了DNAN和TNT晶体的微观力学性能(硬度和弹性模量);通过原位扫描探针成像技术(SPM)研究了DNAN和TNT晶体的压痕形貌随时间的变化差异。结果表明,DNAN晶体的平均硬度和弹性模量分别为7.82GPa和0.22GPa,TNT晶体的平均硬度和弹性模量分别为12.19GPa和0.48GPa,表明TNT抵抗变形的能力优于DNAN;随着压痕深度由118nm增至856nm,DNAN的硬度从0.61GPa降至0.22GPa;随着压痕深度由27nm增至481nm,TNT的硬度从2.9GPa降至0.48GPa,表明DNAN和TNT均存在尺寸效应。随着时间由0增至50.4min,DNAN的压痕深度由-270.99nm减至-44.28nm,TNT的压痕深度由-415.12nm减至-369.21nm,表明DNAN晶体比TNT晶体具有更明显的慢回弹性,DNAN具有更强的冲击能量吸收能力。  相似文献   

8.
炭基体结构状态对C/C复合材料抗烧蚀性能的影响   总被引:12,自引:2,他引:12  
碳基体在C/C复合材料的组成中占有很大的比重,因此炭基体不同的结构状态往往对C/C复合材料的各项性能有显著的影响。本文利用不同的原料和加工工艺制备出了三种具有不同炭基体的C/C复合材料,这三种碳基体分别是热解炭,沥青炭以及解热炭-树脂炭混合炭基体。对这三种材料多项性能的测试结果表明,炭基体的结构状态如石墨化度,炭片层结构的取向度的不同对C/C复合材料的各项性能均有显著的影响;基本趋势是C/C材料的石墨化度越高,材料的导电性能,导热性能以及抗烧蚀性能越好,压缩强度越低。三种炭基体中沥青炭基体沿纤维轴向的取向度最低,其抗烧蚀性能最差。  相似文献   

9.
炭布叠层为预制体,采用等温CVI工艺制备出炭/炭(C/C)复合材料。通过调节丙烯与氢气的比例得到热解炭结构分别为粗糙层(RL),光滑层(SL),各向同性(ISO)的三种C/C复合材料,研究了热解炭组织结构对C/C复合材料热导率的影响,讨论了C/C复合材料的导热机理。结果表明:RL织构C/C复合材料的热导率无论是在平行方向还是在垂直方向上都明显高于SL和ISO织构C/C复合材料,在两个方向上,RL织构C/C复合材料的最大热导率比SL织构C/C复合材料分别大41.0%和31.7%,是ISO织构C/C复合材料的2倍多,且3种C/C复合材料的热导率随温度的升高呈现不同的变化趋势。  相似文献   

10.
为了解决SiC硬质膜力学性能难测试的问题,提出以Oliver-Pharr模型为基础的位移敏感压痕技术来评价SiC硬质膜的硬度及弹性模量.为了解其可靠性,将此方法用于普通玻璃和不锈钢作为参考.选用厚度为315±15 μm的化学气相沉积(CVD)SiC硬质膜作为样品,实验以0.5 N/s的载荷速度进行加卸载,载荷峰值取10~30 N,结果表明:位移敏感压痕法计算出的普通玻璃和不锈钢的硬度分别为6.5 GPa和1.7 GPa,传统显微硬度计测试出的结果分别为5.3 GPa和1.8 GPa,其值比较接近;此方法计算出普通玻璃和不锈钢的弹性模量分别为65.1 GPa和178.4 GPa,与实际值70 GPa和190 GPa误差很小,因此表明该方法可靠性良好.利用位移敏感压痕技术得知CVD SiC硬质膜的硬度和弹性模量为37.7 GPa和456.4 GPa.另外根据维氏压痕形貌,应用JISR1607-1990标准,Anstis,Evans&Charles三断裂韧性公式,计算出普通玻璃和CVD SiC硬质膜KIC均值分别为0.78 MPa·m1/2和2.70 MPa·m1/2.此方法可广泛用于评价硬质膜的硬度和弹性模量等力学性能.  相似文献   

11.
张智  李飞  程文  嵇阿琳  王富强  白侠  纪玲玲 《炭素技术》2013,32(3):10-12,25
以T300炭纤维无纬布、网胎为原材料,层叠针刺成型炭纤维预制体,并采用化学气相沉积工艺对预制体进行致密,制成密度为1.55 g/cm3的针刺C/C复合材料。对针刺C/C复合材料的微观结构进行了观察分析,并对材料力学性能进行了测试。结果表明:化学气相沉积致密的针刺C/C复合材料呈现出以层间大量垂直纤维束为节点的类钉板状网状结构,这种特殊结构使材料层间结合更好,材料整个结构更加紧密;针刺C/C复合材料内部纤维被沉积形成的热解炭所包裹,热解炭的织构类型为光滑层(SL)和粗糙层(RL)并存;针刺C/C复合材料的各项力学性能均达到了较高水平,并且高温力学性能比常温力学性能有了很大幅度的提高。  相似文献   

12.
王海青  赵建国  张素芳  郭永 《现代化工》2007,27(Z1):304-306
介绍了炭/炭复合材料化学液气相沉积工艺的基本原理.化学液气相沉积工艺与热梯度化学气相沉积工艺在本质上是相同的,不同之处是化学液气相沉积用液态烃作前驱体,提高了原料的利用率,加快热解炭沉积的速率.研究了不同沉积温度对炭/炭复合材料微观组织结构的影响.采用偏光显微镜观察了材料的粗糙层、光滑层热解炭微观组织结构.研究发现用环己烷作前驱体当沉积温度为1 100℃时可以得到粗糙层结构的热解炭.  相似文献   

13.
采用阳离子交换树脂作为炭载体的前驱体,经过镍离子交换,再经热解后制备了一种纳米镍/炭(n—Ni/C)复合材料。以XRD、SEM、TEM、EDS为主要分析手段研究了热解条件对纳米镍在n—Ni/C复合材料中的形貌、大小和分布情况的影响。结果表明:通过热解条件可以控制n—Ni/C复合材料中纳米镍的粒径;TEM和SEM—EDS观察表明热解所得n—Ni/C复合材料中的纳米镍颗粒大小均匀、分散性好。差热分析(DTA)研究结果表明加入n-Ni/C可增加高氯酸铵(AP)的表观放热量,降低AP的高温分解峰,最大可达95℃。  相似文献   

14.
采用扫描电子显微镜、金相偏光显微镜对不同结构基体炭,包括热解炭、沥青炭、树脂炭进行形貌表征和分析。通过试验观察到热解炭的微观结构主要分为粗糙层结构、光滑层结构、过渡层结构和各向同性结构,热解炭表面为球冠形结构;沥青炭的主要形貌结构主要有镶嵌型结构,区域与镶嵌并存结构,区域与流线型并存结构,流线型结构;树脂碳的结构主要为表面光滑的块状结构。  相似文献   

15.
热解炭制品的显微硬度   总被引:1,自引:0,他引:1  
本文简述了热解炭制品的显微硬度的测量方法、同时还探讨了测试面上硬度值分布与热解炭沉积时工艺参数间的关系。  相似文献   

16.
炭/炭复合材料组分的微观结构具有多样性.不同前驱体的炭纤维的微观结构不同,PAN基炭纤维的结构最精细,有基本炭网面、微原纤、微纤和条带结构共四级结构单元,高温热处理将使微原纤结构消失从而变成三级结构:基本炭网面、微纤和条带结构;沥青基炭纤维中大致有三级结构单元:微域、域和织构;基体材料无论是热解炭还是沥青炭,都有三级结构,基本结构单元(BSU)、小区域分子取向(LMO)、织构;基体/纤维界面的结构很复杂,具有过渡性,界面结构不但有梯度变化,也有织构突变,基体/纤维界面应力同样会影响纤维的表面和内部结构,这种结构变化在高温热处理后更加明显.  相似文献   

17.
将氧化石墨烯(GO)在氢氧化钾/二甲基亚砜中分散并与对位芳纶聚对苯二甲酰对苯二胺(PPTA)聚阴离子分散液混合得到稳定分散的复合分散液,将该复合分散液通过去离子水处理并利用自组装方法制备由直径为40 nm左右的高长径比芳纶纳米纤维(ANFs)和表面无羧基、羟基含量相对增多的部分脱氧GO(DGO)组成的复合薄膜。对系列复合薄膜进行电子显微镜观察和光谱学分析发现ANFs与DGO间通过氢键和π–π堆叠相互作用紧密结合形成多层结构。采用纳米压痕技术测试旋涂自组装方法制备的薄膜的微观力学性能,发现薄膜弹性模量和纳米硬度在GO用量为PPTA质量的1.5%时,分别达到了32 GPa和1.5 GPa,较未加GO的ANFs提升了104%和87.5%,表明ANFs与GO形成的DGO之间具有较强的协同增强作用。这种具有高硬度、高弹性模量的新型复合材料有望在个体防护、船壳材料、航空航天等领域发挥重要作用。  相似文献   

18.
研究不同水灰比条件下的钢纤维增强水泥基复合材料界面过渡区(ITZ)的纳米力学性能。通过纳米压痕试验,测试界面过渡区及其附近区域的荷载–压痕深度曲线,运用Oliver-Pharr方法研究了弹性模量和硬度分布规律并绘制相应的微结构表征云图,结合扫描电子显微镜分析ITZ形成机制。此外,利用反褶积法对ITZ的弹性模量及压痕硬度的频率分布曲线进行多峰拟合,得到了各相的频率分布。结果表明:不同水灰比样品界面过渡区的厚度均为40μm左右;在界面过渡区内,弹性模量和压痕硬度的最弱点在距纤维表面20μm附近,且水灰比越大,弹性模量与压痕硬度值越小;随着水灰比的增大,界面过渡区孔洞和低密度水化硅酸钙含量逐渐增高,高密度水化硅酸钙含量逐渐降低。  相似文献   

19.
以针刺网胎/无纬布为预制体,采用CVD法和液相浸渍法制备了热解炭基、树脂炭基、沥青炭基C/C复合材料,并研究了这些材料的断裂韧性及其断裂机理。研究表明:沥青炭基C/C复合材料的XY向断裂韧性明显高于热解炭基和树脂炭基,其XY向和Z向分别达到4.54MPa·m~(1/2)和3.15 MPa·m~(1/2),表现为假塑性断裂;三种基体炭C/C复合材料的XY向断裂韧性均大于Z向。  相似文献   

20.
分别以LJ1、LJ2、YJ、ZJ 4种焦炭颗粒作为增强体,CVD炭作为基体,利用TCVI设备制备出了焦炭颗粒增强热解炭基(焦炭颗粒/热解炭)复合材料。并从其力学性能着手,使用金相显微镜分析其显微结构,采用扫描电镜观察其断口微观形貌,并结合载荷-位移曲线综合分析其断裂方式及机理。结果表明:4种焦炭颗粒/热解炭复合材料中,LJ1和ZJ焦炭颗粒沉积前后密度与质量变化最大,其质量分别增加57.4%和64.3%;焦炭颗粒/热解炭复合材料微观组织结构为各向异性;LJ2焦炭颗粒/热解炭复合材料轴向和径向的压缩强度分别为203.7 MPa和176.3 MPa,在4种焦炭颗粒/热解炭复合材料中强度最高;4种焦炭颗粒/热解炭复合材料压缩断裂方式为脆性断裂,LJ2焦炭颗粒/热解炭复合材料和YJ焦炭颗粒/热解炭复合材料主要是因其内部焦炭颗粒孔洞的应力集中造成断裂,LJ1焦炭颗粒/热解炭复合材料和ZJ焦炭颗粒/热解炭复合材料主要沿其焦炭颗粒的层片断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号