共查询到20条相似文献,搜索用时 78 毫秒
1.
基于集成的非均衡数据分类主动学习算法 总被引:1,自引:0,他引:1
当前,处理类别非均衡数据采用的主要方法之一就是预处理,将数据均衡化之后采取传统的方法加以训练.预处理的方法主要有过取样和欠取样,然而过取样和欠取样都有自己的不足,提出拆分提升主动学习算法SBAL( Split-Boost Active Learning),该算法将大类样本集根据非均衡比例分成多个子集,子集与小类样本集合并,对其采用AdaBoost算法训练子分类器,然后集成一个总分类器,并基于QBC( Query-by-committee)主动学习算法主动选取有效样本进行训练,基本避免了由于增加样本或者减少样本所带来的不足.实验表明,提出的算法对于非均衡数据具有更高的分类精度. 相似文献
2.
本文根据作者在设计实施CIMS工作中的实践,探讨了CIMS环境下数据集成管理的策略,结合企业实际情况论述了系统结构框架,数据分布原则,数据库逻辑结构和物理结构及安全保密体系。 相似文献
3.
基于分歧的半监督学习 总被引:9,自引:0,他引:9
传统监督学习通常需使用大量有标记的数据样本作为训练例,而在很多现实问题中,人们虽能容易地获得大批数据样本,但为数据 提供标记却需耗费很多人力物力.那么,在仅有少量有标记数据时,可否通过对大量未标记数据进行利用来提升学习性能呢?为此,半监督学习 成为近十多年来机器学习的一大研究热点.基于分歧的半监督学习是该领域的主流范型之一,它通过使用多个学习器来对未标记数据进行利用, 而学习器间的"分歧"对学习成效至关重要.本文将综述简介这方面的一些研究进展. 相似文献
4.
在很多真实应用中,数据以流的形式不断被收集得到.由于数据收集环境往往发生动态变化,流数据的分布也会随时间不断变化.传统的机器学习技术依赖于数据独立同分布假设,因而在这类分布变化的流数据学习问题上难以奏效.本文提出一种基于决策树模型重用的算法进行分布变化的流数据学习.该算法是一种在线集成学习方法:算法将维护一个模型库,并... 相似文献
5.
针对流数据中概念漂移发生后,在线学习模型不能对分布变化后的数据做出及时响应且难以提取数据分布的最新信息,导致学习模型收敛较慢的问题,提出一种基于在线集成的概念漂移自适应分类方法(adaptive classification method for concept drift based on online ensemble,AC_OE). 一方面,该方法利用在线集成策略构建在线集成学习器,对数据块中的训练样本进行局部预测以动态调整学习器权重,有助于深入提取漂移位点附近流数据的演化信息,对数据分布变化进行精准响应,提升在线学习模型对概念漂移发生后新数据分布的适应能力,提高学习模型的实时泛化性能;另一方面,利用增量学习策略构建增量学习器,并随新样本的进入进行增量式的训练更新,提取流数据的全局分布信息,使模型在平稳的流数据状态下保持较好的鲁棒性. 实验结果表明,该方法能够对概念漂移做出及时响应并加速在线学习模型的收敛速度,同时有效提高学习器的整体泛化性能.
相似文献6.
网格环境下数据集成模型研究 总被引:1,自引:0,他引:1
基于OGSA—DAI给出了一个用于解决网格环境下异构数据源数据集成和分布式查询处理的数据集成模型,在此基础上利用客户端元数据库解决了用户对目标数据库信息了解匮乏的问题,从而为用户的分布式查询处理提供了一种直观透明的、可视化的虚拟数据库视图环境。 相似文献
7.
8.
基于样本权重更新的不平衡数据集成学习方法 总被引:1,自引:0,他引:1
不平衡数据的问题普遍存在于大数据、机器学习的各个应用领域,如医疗诊断、异常检测等。研究者提出或采用了多种方法来进行不平衡数据的学习,比如数据采样(如SMOTE)或者集成学习(如EasyEnsemble)的方法。数据采样中的过采样方法可能存在过拟合或边界样本分类准确率较低等问题,而欠采样方法则可能导致欠拟合。文中将SMOTE,Bagging,Boosting等算法的基本思想进行融合,提出了Rotation SMOTE算法。该算法通过在Boosting过程中根据基分类器的预测结果对少数类样本进行SMOTE来间接地增大少数类样本的权重,并借鉴Focal Loss的基本思想提出了根据基分类器预测结果直接优化AdaBoost权重更新策略的FocalBoost算法。对不同应用领域共11个不平衡数据集的多个评价指标进行实验测试,结果表明,相比于其他不平衡数据算法(包括SMOTEBoost算法和EasyEnsemble算法),Rotation SMOTE算法在所有数据集上具有最高的召回率,并且在大多数数据集上具有最佳或者次佳的G-mean以及F1Score;而相比于原始的AdaBoost,FocalBoost则在其中9个不平衡数据集上都获得了更优的性能指标。 相似文献
9.
网格环境下基于OGSA-DAI的异构数据集成研究 总被引:3,自引:0,他引:3
OGSA-DAI(Open Grid Services Architecture-Data Access and Integration)致力于构造通过网格访问和集成来自不同孤立数据源的中间件,符合基于OGSA的网格标准.文中介绍了OGSA-DAI的框架模型和体系结构,分析了实现数据访问、集成的原理.通过具体的实例,详细介绍了OGSA-DAI的开发和应用过程. 相似文献
10.
在数据对标等实际业务中,需要从大量数据表中找出相似的数据表,这时需要有经验的人工进行筛选,费时费力.基于能够自动化识别并推荐相似数据表的目的,采用了多种文本相似度算法自动识别并推荐相似表及表中相似字段的思路,从数据表名和数据项两方面综合考虑,对于中英文字段分别处理,并引入核心字段来推荐相似表中的相似字段项.通过与专家预... 相似文献
11.
在监督或半监督学习的条件下对数据流集成分类进行研究是一个很有意义的方向.从基分类器、关键技术、集成策略等三个方面进行介绍,其中,基分类器主要介绍了决策树、神经网络、支持向量机等;关键技术从增量、在线等方面介绍;集成策略主要介绍了boosting、stacking等.对不同集成方法的优缺点、对比算法和实验数据集进行了总结与分析.最后给出了进一步研究方向,包括监督和半监督学习下对于概念漂移的处理、对于同质集成和异质集成的研究,无监督学习下的数据流集成分类等. 相似文献
12.
目前数据流分类算法大多是基于类分布这一理想状态,然而在真实数据流环境中数据分布往往是不均衡的,并且数据流中往往伴随着概念漂移。针对数据流中的不均衡问题和概念漂移问题,提出了一种新的基于集成学习的不均衡数据流分类算法。首先为了解决数据流的不均衡问题,在训练模型前加入混合采样方法平衡数据集,然后采用基分类器加权和淘汰策略处理概念漂移问题,从而提高分类器的分类性能。最后与经典数据流分类算法在人工数据集和真实数据集上进行对比实验,实验结果表明,本文提出的算法在含有概念漂移和不均衡的数据流环境中,其整体分类性能优于其他算法的。 相似文献
13.
详细介绍了国内外集成分类算法,对集成分类算法的两个部分(基分类器组合和动态更新集成模型)进行了详细综述,明确区分不同集成算法的优缺点,对比算法和实验数据集。并且提出进一步的研究方向和考虑的解决办法。 相似文献
14.
在进行组合决策时,已有的组合分类方法需要对多个组合分类器均有效的公共已知标签训练样本。为了解决在没有已知标签样本的情况下数据流组合分类决策问题,提出一种基于约束学习的数据流组合分类器的融合策略。在判定测试样本上的决策时,根据直推学习理论设计满足每一个局部分类器约束度量的方法,保证了约束的可行性,解决了分布式分类聚集时最大熵的直推扩展问题。测试数据集上的实验证明,与已有的直推学习方法相比,此方法可以获得更好的决策精度,可以应用于数据流组合分类的融合。 相似文献
15.
为了去除集成学习中的冗余个体,提出了一种基于子图选择个体的分类器集成算法。训练出一批分类器,利用个体以及个体间的差异性构造出一个带权的完全无向图;利用子图方法选择部分差异性大的个体参与集成。通过使用支持向量机作为基学习器,在多个分类数据集上进行了实验研究,并且与常用的集成方法Bagging和Adaboost进行了比较,结果该方法获得了较好的集成效果。 相似文献
16.
自适应随机森林分类器在每个基础分类器上分别设置了警告探测器和漂移探测器,实例训练时常常会同时触发多个警告探测器,引起多棵背景树同步训练,使得运行所需的内存大、时间长。针对此问题,提出了一种改进的自适应随机森林集成分类算法,将概念漂移探测器设置在集成学习器端,移除各基础树端的漂移探测器,并根据集成器预测准确率确定需要训练的背景树的数量。用改进后的算法对较平衡的数据流进行分类,在保证分类性能的前提下,与改进前的算法相比,运行时间有所降低,消耗内存有所减少,能更快适应数据流中出现的概念漂移。 相似文献
17.
数据流高速、连续无限和动态的特性使得传统的数据分析和挖掘技术无效或需要改进。以数据流分类为重点,分析了数据流分类中的一些关键问题,综述了典型的数据流分类技术;针对现有方法的不足,给出了应用主动学习和半监督学习的新思路。 相似文献
18.
针对入侵检测的标记数据难以获得的问题,提出一种基于集成学习的Self-training方法——正则化Self-training。该方法结合主动学习和正则化理论,利用无标记数据对已有的分类器(该分类器对分类模式已学习得很好)作进一步的改进。对三种主要的集成学习方法在不同标记数据比例下进行对比实验,实验结果表明:借助大量无标记数据可以改善组合分类器的分类边界,算法能显著地降低结果分类器的错误率。 相似文献
19.
预测软件缺陷的数目有助于软件测试人员更多地关注缺陷数量多的模块,从而合理地分配有限的测试资源。针对软件缺陷数据集不平衡的问题,提出了一种基于数据过采样和集成学习的软件缺陷数目预测方法——SMOTENDEL。首先,对原始软件缺陷数据集进行n次过采样,得到n个平衡的数据集;然后基于这n个平衡的数据集利用回归算法训练出n个个体软件缺陷数目预测模型;最后对这n个个体模型进行结合得到一个组合软件缺陷数目预测模型,利用该组合预测模型对新的软件模块的缺陷数目进行预测。实验结果表明SMOTENDEL相比原始的预测方法在性能上有较大提升,当分别利用决策树回归(DTR)、贝叶斯岭回归(BRR)和线性回归(LR)作为个体预测模型时,提升率分别为7.68%、3.31%和3.38%。 相似文献
20.
Xibin DONG Zhiwen YU Wenming CAO Yifan SHI Qianli MA 《Frontiers of Computer Science》2020,14(2):241-258
Despite significant successes achieved in knowledge discovery,traditional machine learning methods may fail to obtain satisfactory performances when dealing with complex data,such as imbalanced,high-dimensional,noisy data,etc.The reason behind is that it is difficult for these methods to capture multiple characteristics and underlying structure of data.In this context,it becomes an important topic in the data mining field that how to effectively construct an efficient knowledge discovery and mining model.Ensemble learning,as one research hot spot,aims to integrate data fusion,data modeling,and data mining into a unified framework.Specifically,ensemble learning firstly extracts a set of features with a variety of transformations.Based on these learned features,multiple learning algorithms are utilized to produce weak predictive results.Finally,ensemble learning fuses the informative knowledge from the above results obtained to achieve knowledge discovery and better predictive performance via voting schemes in an adaptive way.In this paper,we review the research progress of the mainstream approaches of ensemble learning and classify them based on different characteristics.In addition,we present challenges and possible research directions for each mainstream approach of ensemble learning,and we also give an extra introduction for the combination of ensemble learning with other machine learning hot spots such as deep learning,reinforcement learning,etc. 相似文献