首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以TiS2、Ti、石墨粉(C)为原料,在200~1100 ℃温度范围内,用微波混合加热法合成Ti2SC 陶瓷粉体。探讨了反应温度对Ti2SC制备的影响,并在1000~1400 ℃温度下用无压烧结进行对比研究。采用XRD、SEM、DSC和热力学对样品的物相、形貌和反应机理进行分析。研究结果表明:利用无压烧结到1400 ℃保温15 min,样品中主相是C,只合成了少量目标相Ti2SC。而用微波混合加热, 400 ℃时,样品中主相为Ti2SC,含有大量的C。升温到800 ℃,目标相衍射峰增强,C衍射峰减弱。在 1100 ℃保温3 min,合成了单相Ti2SC 粉体材料,其颗粒平均尺寸为2-5 mm。在TiS2-Ti-C体系中,400 ℃以下,TiS2和Ti反应生成Ti-S化合物;400 ℃及以上,Ti、C和Ti-S化合物反应生成Ti2SC。  相似文献   

2.
《陶瓷》2016,(8)
以TiS_2、Ti、C为原料,利用无压烧结方法制备Ti_2SC陶瓷粉体。研究了组成和烧结温度对试样物相组成的影响。利用XRD、SEM、差热分析和热力学分析方法对样品的物相和反应路径进行表征分析。结果表明:当原始组分中S过量10at%时,样品主相为TiS,只有少量目标相Ti_2SC存在。随着S过量的增加,目标相含量随之增加,但C含量减少。当S过量30at%时,样品中主相为Ti_2SC,只有微量的C,TiC和TiS存在。当原料比为1.15TiS_2/2.85Ti/2C时,烧成温度为1 600℃,氩气气氛下合成了纯度较高的Ti_2SC陶瓷粉体,其晶粒尺寸为5~10μm。在TiS_2-Ti-C体系中,由TiS和TiC反应生成目标相Ti_2SC。  相似文献   

3.
以钛粉、硫粉、碳粉及碳化钛粉为原料,采用自蔓延高温合成制备Ti_2SC粉体,研究Ti C的含量对自蔓延高温合成Ti_2SC粉体的影响。研究表明,在Ti-S-C/Ti C的合成产物中主相为Ti_2SC,有少量的Ti C和Ti_3S_4,当Ti C的含量为1.05 mol时仅存在Ti_2SC和Ti C,并且促进Ti_2SC片层结构的形成,在反应体系中,S先变为液态,随着温度的升高钛包裹在碳的外面形成钛碳层,继续加热Ti和S反应生成Ti_3S_4及液态的Ti-S,温度逐步升高钛碳层形成Ti C,最后Ti C与Ti_3S_4发生反应生成片状的Ti_2SC。Ti C的添加可以有效避免合成Ti_2SC过程中产生的热爆反应。  相似文献   

4.
彭航  代帅  娄浪  倪杰  李任鹏  陈艳林 《硅酸盐学报》2019,47(9):1301-1305
以TiC粉、Al粉、Ti粉为原料,采用无压烧结工艺制备高纯Ti–Al–C三元层状陶瓷,探究了烧结温度、烧结时间、烧结助剂等对Ti–Al–C系三元层状陶瓷制备的影响。结果表明:在一定范围内提高烧结温度和烧结时间能减少杂质相的产生,不添加助剂情况下在1 400℃下保温3 h能得到80%(质量分数)以上的Ti–Al–C系三元层状陶瓷,该条件下掺入少量Si粉或Sn粉能得到高纯Ti–Al–C系三元层状陶瓷。TiC、Al、Ti和Si质量比为2.0:1.2:1.0:0.1的原料粉末在1 400℃保温3 h能得到纯度99%以上的Ti_3AlC_2陶瓷,TiC、Al、Ti和Sn质量比为2.0:1.2:1.0:0.1与TiC、Al、Ti和Sn质量比为1.0:1.2:1.0:0.1的原料粉末在1 400℃保温3 h均能制备出纯度99%的以Ti_3AlC_2为主晶相的Ti_3AlC_2/Ti_2AlC复相陶瓷。  相似文献   

5.
《陶瓷》2019,(12)
利用钛粉、铝粉和石墨粉混合作为原料并添加少量低熔点元素——锡粉以改变烧结温度和铝含量,采用无压烧结技术在烧结温度为1 400℃,原料Ti/Al/C的摩尔比为3∶1.2∶2下制备出三元Ti_3AlC_2材料。通过X射线衍射仪表征其结构,获得的Ti_3AlC_2的纯度为96.7%,利用场发射扫描电子显微镜研究观察其微观形貌为典型的层状结构。为进一步合成锂离子电池负极材料MXene相Ti_3C_2提供基础。  相似文献   

6.
反应温度和时间对Bi2SiO5合成的影响   总被引:1,自引:0,他引:1  
亚稳相Bi2SiO5是Bi2O3-SiO2系统最新发现的化合物晶相。利用XRD,DSC研究了反应温度和时间对Bi2SiO5合成的影响。将Bi2O3与SiO2按物质的量比1:1混合,在一定温度下处理一定时间获得生成产物。结果表明:亚稳化合物Bi2SiO3在固相反应时产生,并随温度及保温时间按一定规律变化。固相反应温度由700℃升高至900℃过程中,亚稳态Bi2SiO5逐渐转变为稳定态Bi12SiO2和Bi4Si3O12反应温度对Bi2SiO5的生成起决定性作用。750℃保温不同时间所获试样的XRD谱表明,固相反应时间延长,反应物Bi2O3的衍射峰减弱,稳定相Bi12SiO20衍射峰增强,随着反应的进行,生成物亚稳相Bi2SiO5的衍射峰减弱,反应时间过长,不利于亚稳相Bi2SiO5生成。  相似文献   

7.
以Cr、Al、Cr_3C_2粉为原料,采用微波混合加热法在700~1 050℃内保温3 min,氩气保护下,合成了Cr_2AlC陶瓷粉体。考察了物料比、烧结温度对产物的影响。采用XRD、SEM、DSC对样品的物相、形貌进行了表征。结果表明,当原始组分中Al非过量时,样品为Cr_2AlC单相;当n(Cr_3C_2)∶n(Al)∶n(Cr)=1∶(2.1~2.4)∶1时,样品主相为Cr_2AlC,另有少量杂质相C(石墨)和Cr8Al5。微波混合加热到700~1 000℃时,目标相快速增加伴随着Cr-Al金属间化合物、未反应的Cr和Cr_3C_2的减少;在1 050℃时保温3 min,可获得单相Cr_2AlC陶瓷粉体,其平均颗粒尺寸为5~8μm。  相似文献   

8.
崔彩娥  刘舵  黄平  雷星  杨帆 《硅酸盐学报》2012,(9):1351-1355
以金属硝酸盐和钛酸丁酯为原料,乙酰丙酮为螯合剂,采用溶胶-凝胶法制备了Y2O2S:Eu3+,Mg2+,Ti4+红色长余辉发光粉体。采用X射线衍射仪、扫描电子显微镜和荧光分光光度计对不同温度合成的样品性能进行测试与表征。结果表明:干凝胶在600℃保温2 h生成了立方相的前驱体Y2O3:Eu3+,Mg2+,Ti4+。前驱体在1050~1150℃硫化后的产物为Y2O3与Y2O2S的混合相,在1 200℃时,硫化生成纯相的Y2O2S:Eu3+,Mg2+,Ti4+,产物平均粒径约为150nm,1300℃时再次出现Y2O3相。与高温固相法相比,溶胶-凝胶法制备的样品主激发峰出现蓝移,主发射峰位于616nm和626nm处,对应于Eu3+的5D0→7F2跃迁;硫化温度为1200℃时,样品的余辉时间为40min。  相似文献   

9.
以3Ti/1.1Al/1.9C混合粉末为原料,采用放电等离子烧结(SPS)技术,利用X射线衍射仪、扫描电子显微镜和透射电子显微镜等分析方法,研究了致密单相Ti3AlC2三元层状化合物的合成机理,详细探讨了烧结温度对产物合成的影响,提出了一种SPS制备致密单相Ti3AlC2的反应机理。结果表明:利用SPS技术,在1 350℃保温10min的条件下,可以获得致密度大于99%的层状致密单相Ti3AlC2材料。最终产物中TiC的残留与原料中C含量有密切关系,适当降低原料中C含量有利于最终产物中TiC的消除。致密单相三元层状化合物Ti3AlC2的合成过程中,AlTi3和TiAl是形成TiC和Ti2AlC的主要中间相,而Ti3AlC2是由TiC与Ti2AlC反应生成的。  相似文献   

10.
通过液相磁力搅拌混合原料粉末,压片后无压烧结合成了三元Ti3SiC2,研究不同原料配比Ti/Si/C,Ti/SiC/C/和TiC/Si/Ti对合成Ti3SiC2的影响,同时为了比较,在相同条件下加入少量Al或Sn,研究其对Ti3SiC2的合成过程及最终产物的影响,并探讨Ti3SiC2的合成机理.结果表明:3Ti/1.2Si/2C/0.1Al在1400 ℃无压烧结合成了较高纯度的Ti3SiC2,Al粉的加入可以降低混合粉末的起始反应温度,有利于三元层状化合物Ti3SiC2的合成和纯度的提高,其合成机制为,在铝粉形成的熔池中,经形核钛和硅反应生成钛硅金属间化合物,钛与石墨反应生成碳化钛,随后扩散,长大,随着温度的升高,反应生成三元层状Ti3SiC2.而以TiC或SiC为Ti或Si源制备的Ti3SiC2含杂质较多,不适用于无压烧结合成Ti3SiC2.合成的Ti3SiC2在HF溶液中经200 ℃溶剂热反应后,产物主要为两种不同晶型的SiC和AlF3立方体,且随着反应时间的延长,AlF3的含量增加,结晶更完善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号