首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
L1范数的总变分正则化超分辨率图像重建   总被引:1,自引:0,他引:1  
超分辨率图像重建技术能够综合利用多帧离散图像、多组视频序列、或单帧图像与训练样本图像之间的互补信息,重建质量更好、空间分辨率更高的图像数据,弥补原有图像数据空间分辨率的不足,提高图像空间解像力和清晰度。介绍了基于正则化方法的超分辨率图像重建的研究现状和以正则化为基础的几种重建方法在近几年的研究和发展趋势。在此基础上,采用L1范数对重建图像保真度进行约束,利用总变分正则化克服重建问题的病态性,有效地保持了图像的边缘。实现了对包含文字信息的图像的正则化超分辨率重建,实验验证了方法的有效性。  相似文献   

2.
提出L1范数正则化支持向量机(SVM)聚类算法。该算法能够同时实现聚类和特征选择功能。给出L1范数正则化SVM聚类原问题和对偶问题形式,采用类似迭代坐标下降的方法求解困难的混合整数规划问题。在多组数据集上的实验结果表明,L1范数正则化SVM聚类算法聚类准确率与L2范数正则化SVM聚类算法相近,而且能够实现特征选择。  相似文献   

3.
为解决图像因各种干扰而模糊的问题,基于典型的正则化约束方法,提出两种图像去模糊正则化模型的图像重建方法。在图像非盲去模糊方面,提出一种基于L0范数和非局部全变分(NLTV)的图像非盲去模糊模型,对图像平滑区和非平滑区分别采用L0范数和NLTV约束,对两个部分采用不同的算法分别求解;在图像盲去模糊方面,提出一种基于L0范数和联合全变分的图像盲去模糊模型,利用L0范数约束求解和模糊核估计方法得到模糊核和潜在图像,用联合全变分对潜在图像求解。实验结果表明,两个模型均有较好的去模糊效果和一定的抗噪鲁棒性。  相似文献   

4.
针对SAR图像超分辨重构问题,建立了基于多孔多方向小波域的正则化模型。在选取正则化参数时,提出一种自适应确定方法,该方法无需知道噪声大小和图像的先验知识,提高了确定正则化参数的准确性;求解模型时用FR共轭梯度法来改善算法的收敛性。最后将该算法分别与空域中正则化算法和小波域及轮廓波域中正则化算法进行了比较,仿真实验结果表明,该算法较好地再现了各种边缘信息,其重构结果均优于其他三种方法。  相似文献   

5.
刘建伟  付捷  罗雄麟 《计算机工程》2012,38(13):148-151
提出一种L1+L2范数正则化逻辑斯蒂模型分类算法。该算法引入L2范数正则化,解决L1正则化逻辑斯蒂算法迭代过程奇异问题,通过引入样本向量的扩展和新的权值向量完成L1范数非平滑问题,最终使用共轭梯度方法求解经过转化的最优化问题。在各种实际数据集上的实验结果表明,该算法优于L2范数、L1范数和Lp范数正则化逻辑斯蒂模型,具有较好的特征选择和分类性能。  相似文献   

6.
针对SAR图像超分辨重构问题,建立了基于多尺度Contourlet域的正则化模型。在选取正则化参数时,提出一种自适应确定方法,该方法无需知道噪声大小和图像的先验知识,提高了确定正则化参数的准确性;求解模型时用FR共轭梯度法来改善算法的收敛性。将该算法分别与空域中正则化算法和小波域中正则化算法进行了比较,仿真实验结果表明,该算法较好地再现了各种边缘信息,其重构结果均优于其他两种方法。  相似文献   

7.
节点定位是实现无线传感器网络(wireless sensor networks, WSNs)应用的重要前提之一.针对传统基于测距的定位方法需要大量节点距离信息以及多径效应、噪声干扰等导致的节点测距误差问题,提出了一类基于L1范数正则化矩阵补全(L1-norm regularized matrix completion, L1NRMC)的WSNs节点定位方法.该方法基于传感网节点间距离矩阵低秩特性,将部分采样信息下的距离恢复问题建模为稀疏野值噪声(outlier)情形下的矩阵补全问题,然后采用交替方向乘子法(alternating direction method of multipliers, ADMM)结合算子分裂技术(operator splitting technology)对该问题进行求解,所设计的非精确L1范数正则化矩阵补全(InExact-L1NRMC)算法不仅能显式解析采样矩阵中的稀疏野值噪声,也可隐式平滑常见的高斯随机噪声.仿真结果表明:相比已有的同类定位方法,该算法只需进行部分测距采样即可实现精准的节点定位,且对各类测距噪声具有很好的抗干扰能力,适用于资源受限的WSNs.  相似文献   

8.
王欢  王永革 《计算机工程》2012,38(20):191-194
为提高图像重建质量,研究超分辨率图像重建技术与稀疏表示理论,提出一种基于L1/2正则化的超分辨率图像重建算法.将L1/2正则化理论运用到字典学习中,利用学习得到的字典重建高分辨率图像.实验结果表明,该算法的图像重建效果优于基于L1正则化的超分辨率图像重建算法.  相似文献   

9.
基于卷积神经网络的正则化方法   总被引:2,自引:0,他引:2  
正则化方法是逆问题求解中经常使用的方法.准确的正则化模型在逆问题求解中具有重要作用.对于不同类型的图像和图像的不同区域,正则化方法的能量约束形式应当不同,但传统的L1,L2正则化方法均基于单一先验假设,对所有图像使用同一能量约束形式.针对传统正则化模型中单一先验假设的缺陷,提出了基于卷积神经网络的正则化方法,并将其应用于图像复原问题.该方法的创新之处在于将图像复原看作一个分类问题,利用卷积神经网络对图像子块的特征进行提取和分类,然后针对不同特征区域采用不同的先验形式进行正则化约束,使正则化方法不再局限于单一的先验假设.实验表明基于卷积神经网络的正则化方法的图像复原结果优于传统的单一先验假设模型.  相似文献   

10.
图像具有大量的局部结构相似区域,并且这种相似性可以在多个尺度上保持。基于这一特征,利用结构相似指标进行相似性匹配生成相似的低分辨率图像序列,从而把单幅图像的超分辨问题转化为图像序列超分辨问题来解决。文中提出了一种新的自适应的正则化方法,正则参数的选取使得目标函数存在全局最优解。最后证明了算法的收敛性。实验表明,该方法具有很好的复原效果。  相似文献   

11.
超分辨率图像重建是指从一组降晰的低分辨率图像重建出一帧清晰的高分辨率图像的过程。建立了超分辨率图像重建的数学模型,估计出场景在观测图像中的运动参数,选择总变分规整化克服问题的病态性得到重建结果。运用算法对模拟和实际图像序列进行重建,分别从主观效果和客观衡量标准两方面与基于Tikhonov规整化的超分辨率重建结果进行比较,结果表明该算法具有更好的处理效果。  相似文献   

12.
截断核范数和全变差正则化高光谱图像复原   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 高光谱图像距具有较高的光谱分辨率,从而具备区分诊断性光谱特征地物的能力,但高光谱数据经常会受到如环境、设备等各种因素的干扰,导致数据污染,严重影响高光谱数据在应用中的精度和可信度。方法 根据高光谱图像光谱维度特征值大小与所包含信息的关系,利用截断核范数最小化方法表示光谱低秩先验,从而有效抑制稀疏噪声;再利用高光谱图像的空间稀疏先验建立正则化模型,达到去除高密度噪声的目的;最终,结合上述两种模型的优势,构建截断核范数全变差正则化模型去除高斯噪声、稀疏噪声及其他混合噪声等。结果 将本文与其他三种近期发表的主流去噪方法进行对比,模型平均峰信噪比提高3.20 dB,平均结构相似数值指标提高0.22,并可以应用到包含各种噪声、不同尺寸的图像,其模型平均峰信噪比提高1.33 dB。结论 本文方法在光谱低秩中更加准确地表示了观测数据的先验特征,利用高光谱遥感数据的空间和低秩先验信息,能够对含有高密度噪声以及稀疏异常值的图像进行复原。  相似文献   

13.
针对没有完整先验知识的降质图像的多帧图像恢复问题,利用非局部总体变分正则化方法,提出了多帧图像盲反卷积问题求解的有效数值算法。该算法既能保持重建图像的边缘与纹理结构又能抑制相关噪声,而且能同时重建原始图像和相关的点扩展函数PSF。实验结果表明提出的方法具有明显的优越性。  相似文献   

14.
针对超分辨率重建时需要同时滤除高斯噪声和脉冲噪声的问题,提出一种基于L1和L2混合范式并结合双边全变分(BTV)正则化的序列图像超分辨率重建方法。首先基于多分辨率策略的光流场模型对序列低分辨率图像进行配准,使图像的配准精度达到亚像素级,进而可以利用图像间的互补信息提高图像分辨率;其次利用L1和L2混合范式的优点,用BTV正则化算法解决重建的病态性反问题;最后进行序列图像超分辨率重建。实验数据显示算法可以降低图像均方误差,并将峰值信噪比(PSNR)提高1.2 dB~5.2 dB。实验结果表明,提出的算法能够有效地滤除高斯和脉冲噪声,保持图像边缘,提高图像可辨识度,可为车牌识别、人脸识别和视频监控等方面提供了良好的技术基础。  相似文献   

15.
在断层重建的很多工程应用中,由于低剂量以及成像硬件等原因,经常需要在测量数据不充分的情况下去重建图像。基于图像分段光滑的假设,提出采用误差的加权范数作为数据保真项,TV(total variation)作为正则项的断层图像重建模型。该模型求解时,首先通过引入代理函数将原问题解耦为残差的加权范数最小化和加权范数TV去噪这两个子问题;然后采用了Chambolle的对偶空间正交投影法的框架对加权范数TV去噪问题进行求解,避免了由于TV项在不可导处所带来的计算不稳定;最后,为了提高收敛速度并且避免由正则化参数选取所引起的数值不稳定,引入Bregman方法,给出该模型的快速迭代算法。在扇形束少角度欠采样的条件下,对理想情况和高斯噪声情况下进行仿真测试,并同多种算法进行了比较。实验结果表明,该算法重建效果好,收敛速度快。  相似文献   

16.
正则化方法是目前解决超分辨率重建中病态问题的一种被广泛使用的方法。在分析了现有基于多种正则化超分辨率重建方法的基础上,构造了一种基于双边全变分(BTV)的自适应核回归滤波核,并将它作为正则化超分辨率重构的代价函数,该方法根据图像特征自适应生成正则项的滤波核函数。实验结果表明,与传统的正则化重建方法相比较,该算法既能有效地去除噪声,也能很好地保留图像细节部分,同时还具有一定的鲁棒性。通过客观和主观评价表明,图像重建质量有显著的提高。  相似文献   

17.
沈马锐  李金城  张亚  邹健 《计算机应用》2020,40(8):2358-2364
针对于核磁共振(MR)图像重构中由于欠采样导致的重构图像不够完整、边缘模糊以及噪声残留等问题,提出了一种基于L2正则的非凸全变差正则重构模型。首先,以Moreau包络和最小最大凹罚函数为工具构造L2范数的非凸正则;然后,将其应用于全变差正则上来构造各向同性的非凸全变差正则稀疏重构模型。所提的非凸正则可以有效地避免凸正则中对较大非零元欠估计现象,能够更有效地重构目标的边缘轮廓;同时,在一定条件下可以保证目标函数的整体凸性,从而最后可以利用交替方向乘子法(ADMM)对模型进行求解。仿真实验对若干MR图像在不同的采样模板和采样率下进行了重构。实验结果均表明,与几种典型的图像重构方法相比,所提模型性能更优,相对误差明显降低,峰值信噪比(PSNR)有明显改善,较经典的L1非凸正则重构模型提升了大约4 dB,并且重构后的图像视觉效果显著提升,有效地保留了原始图像的边缘细节。  相似文献   

18.
为了利用[l1]范数保持图像边缘信息的优势,并兼顾[l2]范数对图像平坦区域噪声抑制的特性,提出了一种自适应范数混合模型--[l12]范数正则化方法。相比于经典的[l1]范数正则化方法,该方法能够得到更加稀疏的解,同时相比于传统去噪方法,该方法对自然图像的长尾分布噪声具有比较理想的去除效果。还针对范数混合模型中噪声的分布的自适应变化,设计了一种自适应收敛准则迭代方法,该方法可以有效地减少迭代次数。实验结果和分析验证了混合模型在图像重建效果和计算效率方面的有效性。  相似文献   

19.
为在迭代图像重建算法中获得更高质量的重建图像,推导出TV(Total Variation)正则化项关于重建图像的Fréchet导数,并给出该导数的有限元表示;利用两个数值实验,分别采用不同的网格尺寸和不同的形函数验证该有限元表示结果.数值实验结果表明:采用相同的k次单纯形元时,随着网格不断加密,计算结果的L1和L2误差均下降;采用相同的网格时,线性单纯形元函数计算结果明显优于分片常数有限元和二次单纯形元计算结果.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号